

smartBASIC Extensions
RM1xx Series
Document version 1.2

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 2

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

REVISION HISTORY

Version Date Notes Approver

1.0 01 Jun 2016 Initial version N. Zach Hogya

1.1 28 Sept 16 Updates for new firmware N. Zach Hogya

1.2 24 Oct 2016 General doc revisions/edits Jonathan Kaye

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 3

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

CONTENTS
1. Introduction .. 5

Documentation Overview ... 5

What Does a LoRa/BLE Module Contain? ... 5

2. Interactive Mode Commands ... 6

3. Core Language Built-in Routines ... 12

Result Codes .. 12

Information Routines .. 13

UART (Universal Asynchronous Receive Transmit) ... 16

I2C ς Two Wire Interface (TWI) ... 18

SPI Interface .. 18

4. Core Extensions Built-in Routines ... 18

Miscellaneous Routines .. 18

Input/Output Interface Routines .. 18

5. BLE Extensions Built-in Routines ... 29

MAC Address ... 29

Events and Messages .. 30

Miscellaneous Functions ... 50

Advertising Functions .. 53

Scanning Functions.. 65

Whitelist Management Functions ... 81

Connection Functions.. 84

Security Manager Functions.. 98

GATT Server Functions .. 103

GATT Client Functions ... 149

Attribute Encoding Functions .. 205

Attribute Decoding Functions ... 217

Pairing/Bonding Functions .. 234

6. LoRa Extensions Built-in Routines ... 241

Setting RM191 ChannelsMask .. 248

Events and Messages .. 249

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 4

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

7. Other Extension Built-in Routines ... 251

System Configuration Routines ... 251

Miscellaneous Routines .. 251

8. Events and Messages .. 254

9. Module Configuration .. 254

10. Miscellaneous ... 255

11. Acknowledgements ... 257

Index of smartBASIC Commands .. 258

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 5

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

1. INTRODUCTION

Documentation Overview

This RM1xx Extension Functionality user guide provides detailed information on RM1xx-specific
smartBASIC extensions which provide a high level managed interface to the underlying LoRa device and
Bluetooth stack in order to manage the following:

Á Joining a LoRa gateway and transmitting/receiving data payload
Á Link checking on LoRa connection
Á Managing LoRa sleep intervals and reading chipset registers
Á GATT table ς Services, characteristics, descriptors, advert reports
Á GATT server/client operation
Á BLE Advertisments and connections
Á BLE security and bonding
Á Attribute encoding and decoding
Á Power management
Á Wireless status
Á Events related to the above

Please refer to the smartBASIC core reference manual for more details on common functionality that
exists in all platforms that offer smartBASIC.

What Does a LoRa/BLE Module Contain?

[ŀƛǊŘΩǎ smart BASIC-based LoRa/BLE modules are designed to provide a complete wireless processing
solution and contain the following:

Á A highly integrated radio with an integrated antenna (external antenna options are also available)
Á BLE Physical and Link Layer
Á Higher level stack
Á Multiple GPIO and ADC
Á Wired communication interfaces such as UART, I2C, and SPI
Á A smart BASIC run-time engine
Á Program-accessible flash memory which contains a robust flash file system exposing a conventional

file system and a database for storing user configuration data
Á Voltage regulators and brown-out detectors

For simple end devices, these modules can completely replace an embedded processing system.

The following block diagram (Figure 1) illustrates the structure of the BLE + LoRa smart BASIC module from
a hardware perspective on the left and a firmware/software perspective on the right.

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 6

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Figure 1: RM1xx smart BASIC module block diagram

2. INTERACTIVE MODE COMMANDS

Interactive mode commands allow a host processor or terminal emulator to interrogate and control the
operation of a smart BASIC-based module. Many of these emulate the functionality of AT commands.
Others add extra functionality for controlling the filing system and compilation process.

Syntax Unlike commands for AT modems, a space character must be inserted between AT, the
command, and subsequent parameters. This allows the smart BASIC tokeniser to efficiently
distinguish between AT commands and other tokens or variables starting with the letters AT.

óExample:

AT I 3

The response to every Interactive mode command has the following form:

<linefeed character> response text <carriage return>

This format simplifies the parsing within the host processor. The response may be one or multiple lines.
Where more than one line is returned, the last line has one of the following formats:

<lf>00<cr> for a successful outcome, or

<lf>01<tab> hex number <tab> optional verbose explanation <cr> for failure.

Note: In the case of the 01 response, the <tab>optional_verbose_explanation is missing in resource
constrained platforms like the RM1xx modules. The verbose explanation is a constant string and
since there are over 1000 error codes, these verbose strings can occupy more than 10 kilobytes
of flash memory.

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 7

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

The hex number in the response is the error result code consisting of two digits which can be used to help
investigate the problem causing the failure. Rather than provide a list of all the error codes in this manual,
you can use UWTerminal to obtain a verbose description of an error when it is not provided on a platform.

To get the verbose description, click the BASIC tab (in UWTerminal) and, if the error value is hhhh, enter
the command ER 0xhhhh and note the 0x prefix to hhhh. This is illustrated in Error! Reference source not f
ound..

Figure 2: Optional verbose explanation

You can also obtain a verbose description of an error by highlighting the error value, right-clicking, and
selecting Lookup Selected ErrorCode in the Terminal window.

If you get the text UNKNOWN RESULT CODE 0xHHHH, please contact Laird for the latest version of
UWterminal.

AT I ATI ATI ATI

tǊƻǾƛŘŜŘ ǘƻ ƎƛǾŜ ŎƻƳǇŀǘƛōƛƭƛǘȅ ǿƛǘƘ ǘƘŜ !¢ ŎƻƳƳŀƴŘ ǎŜǘ ƻŦ [ŀƛǊŘΩǎ ǎǘŀƴŘŀǊŘ .ƭǳŜǘƻƻǘƘ ƳƻŘǳƭŜǎΦ

AT I num

COMMAND

Returns \n10\ tMM\tInformation\r
 \n00\r

Where

 \n = linefeed character 0x0A
 \ t = horizontal tab character 0x09
 MM = a number (see below)
 Information = sting consisting of information requested associated with MM
 \ r = carriage return character 0x0D

Arguments

num Integer Constant ς A number in the range 0 to 65,535. Currently defined numbers are:

0 Name of device

3 Version number of the module firmware

4 MAC address in the form TT AAAAAAAAAAAA

5 Chipset name

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 8

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

6 Flash File System size stats (data segment): Total/Free/Deleted

7 Flash File System size stats (FAT segment) : Total/Free/Deleted

12 Last error code

13 Language hash value

16 NvRecord Memory Store stats: Total/Free/Deleted

33 BASIC core version number

601 Flash File System: Data Segment: Total Space

602 Flash File System: Data Segment: Free Space

603 Flash File System: Data Segment: Deleted Space

604 Flash File System: FAT Segment: Total Space

605 Flash File System: FAT Segment: Free Space

606 Flash File System: FAT Segment: Deleted Space

631 NvRecord Memory Store Segment: Total Space

632 NvRecord Memory Store Segment: Free Space

633 NvRecord Memory Store Segment: Deleted Space

млллΧмффф See SYSINFO() function definition

нлллΧнффф See SYSINFO() function definition

Interactive
Command

Yes

!ƴȅ ƻǘƘŜǊ ƴǳƳōŜǊ ŎǳǊǊŜƴǘƭȅ ǊŜǘǳǊƴǎ ǘƘŜ ƳŀƴǳŦŀŎǘǳǊŜǊΩǎ ƴŀƳŜΦ

For ATi4, the TT in the response is the type of address as follows:

00 Public IEEE format address

01 Random static address (default as shipped)

02 Random Private Resolvable (used with bonded devices) ς not currently available

03 Random Private Non-Resolvable (used for reconnections) ς not currently available

Note: Please refer to the Bluetooth specification for a further description of the types.

This is an Interactive mode command and must be terminated by a carriage return for it to be processed.

óExample:

AT i 3

10 3 2.0.1.2

00

AT I 4

10 4 01 D31A920731B0

AT i is a core command.

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 9

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

The information returned by this Interactive command can also be useful from within a running
application and so a built-in function called SYSINFO(cmdId) can be used to return exactly the same
information and cmdid is the same value as used in the list above.

AT+CFGEX

COMMAND

AT+CFGEX is used to set a non-volatile configuration key with a string. The syntax of this command is
defined in the smartBASIC Core Functionality Manual.

The following configuration key IDs are specific to the RM1xx module.

Key
ID

Definition Notes

1009 ChannelsMask
Sets the ChannelsMask. Only valid for the RM191. See the Setting RM191
ChannelsMask section below

1010 AppEui Application Identifier ς 8 Bytes/16 Hex Characters

1011 DevEui End Device Identifier ς 8 Bytes/16 Hex Characters

1012 AppKey Application Key ς 16 Bytes/32 Hex Characters

1013 NwkSKey Network Session Key ς 16 Bytes/32 Hex Characters

1014 AppSKey Application Session Key ς 16 Bytes/32 Hex Characters

1015 DevAddr End device Address ς 8-character Hex string

The at+cfgex command returns an invalid key error (7312) if an invalid Key id is entered or the length of
the entered string is incorrect for that specific Key id.

The new config value is only available for use after a system reset.

Note: The NwkSKey, AppSKey, and AppKey values are write-only. These values cannot be read back
using the at+cfgex xxxx? command.

 Prior to firmware versions 17/18.4.1.0 the Key Ids in the table above were in the range of
1000 ς 1005 instead of the new range of 1010-1015.

AT&F

COMMAND

!¢ϧC ǇǊƻǾƛŘŜǎ ŦŀŎƛƭƛǘƛŜǎ ŦƻǊ ŜǊŀǎƛƴƎ ǾŀǊƛƻǳǎ ǇƻǊǘƛƻƴǎ ƻŦ ǘƘŜ ƳƻŘǳƭŜΩǎ ƴƻƴ-volatile memory.

AT&F integermask

Returns OK if file successfully erased.

Arguments
Integermask LƴǘŜƎŜǊ ŎƻǊǊŜǎǇƻƴŘƛƴƎ ǘƻ ŀ ōƛǘ Ƴŀǎƪ ƻǊ ǘƘŜ άϝέ ŎƘŀǊŀŎǘŜǊ

Interactive
Command

Yes

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 10

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

The mask is an additive integer mask, with the following meaning:

0x0000xxxx See core user manual

0x00010000 Erase the BLE bonding database

* Erases all data segments

If an asterisk is used in place of a number, then the module is configured back to the factory default state
by erasing all flash file segments.

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed.

AT&F 0x10000 ódelete the BLE bonding database (AT+BTD* also does it)

AT&F * ódelete all data segments

AT&F is a core command with extensions.

AT + BTD *

COMMAND

Deletes the bonded device database from the flash.

AT + BTD*

Returns \n00\ r

Arguments None

Interactive
Command

Yes

This is an Interactive Mode command and MUST be terminated by a carriage return to be processed.

Note: The module self-reboots so that the bonding manager context is also reset.

óExamples:

AT+BTD*

AT+BTD* is an extension command.

AT + MAC 12 hex digit mac address

COMMAND

This is a command that is successful one time as it writes an IEEE MAC address to non-volatile memory.
This address is then used instead of the random static MAC address that comes preprogrammed in the
module.

Notes: If the module has an invalid licence then this address is not visible.
If the address 000000000000 is written then it is treated as invalid and prevents a new
address from being entered.

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 11

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

AT Ҍ a!/ άмн ƘŜȄ ŘƛƎƛǘǎέ

Returns \n00\ r
or
\n01 192A\ r

Where the error code 192A is NVO_NVWORM_EXISTS. This means that an IEEE MAC
address already exists, which can be read using the command AT I 24.

Arguments

! ǎǘǊƛƴƎ ŘŜƭƛƳƛǘŜŘ ōȅ άέ ǿƘƛŎƘ ǎƘŀƭƭ ōŜ ŀ ǾŀƭƛŘ мн ƘŜȄ ŘƛƎƛǘ MAC address that is written
to non-volatile memory.

Interactive
Command

Yes

This is an Interactive mode command and MUST be terminated by a carriage return for it to be processed.

Note: The module self-reboots if the write is successful. Subsequent invocations of this command
generate an error.

óExamples:

AT+MAC ñ008098010203ò

AT+MAC is an extension command

AT + BLX

COMMAND

This command is used to stop all radio activity (adverts or connections) when in interactive mode. It is
particularly useful when the virtual serial port is enabled while in interactive mode.

AT + BLX

Returns \n00\ r

Arguments None

Interactive
Command

Yes

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed.

Note: The module self-reboots so that the bonding manager context is also reset.

óExamples:

AT+BLX

AT+BLX is an extension command.

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 12

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

3. CORE LANGUAGE BUILT-IN ROUTINES

Core Language built-in routines are present in every implementation of smart BASIC. These routines
provide the basic programming functionality. They are augmented with target specific routines for
different platforms which are described in the next chapter.

Result Codes

Some of these built-in routines are subroutines and some are functions. Functions always return a value
and, for some of these functions the value returned is a result code, indicating success or failure in
executing that function. A failure may not necessarily result in a run-time error (see GetLastError() and
ResetLastError()), but may lead to an unexpected output.

Being able to see the cause of a failure helps with the debugging process. If you declare an integer variable
such as rc and set its value to your function call, after the function is executed you can print rc and see
the result code. For this to be useful, it must be in hexadecimal form; prefix your result code variable with
Lb¢9D9wΦIΩ when printing it. You can also save some memory by printing the return value from the
function directly without the use of a variable.

//Example :: ResultCodes.sb (See in RM1xxCodeSnippets.zip)

 DIM cB, nItems,rc,s$

 rc= CircBufItems (cB,nItems)

 PRINT INTEGER.H' rc

 PRINT " \ n"; //New line

 //Printing return value directly

 PRINT INTEGER.H 'CircBufItems(cB,nItems)

 //To remove the leading zeros

 SPRINT #s$, INTEGER.H' CircBufItems(cB,nItems)

 StrShiftLeft (s$,4) : PRINT s$

Highlight the last four characters of the result code in UwTerminal and select Lookup Selected ErrorCode
(Figure 3).

Figure 3: Lookup Selected ErrorCode

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 13

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

Information Routines

SYSINFO

FUNCTION

Returns an informational integer value depending on the value of varId argument.

SYSINFO(varId)

Returns INTEGER. Value of information corresponding to integer ID requested.

Exceptions Á Local Stack Frame Underflow
Á Local Stack Frame Overflow

Arguments
varId byVal varId AS INTEGER

An integer ID which is used to determine which information is to be returned as
described below.

ID Definition

0 Device ID. For the RM1xx module, the value is 0x42460600

3

Version number of the module firmware. For example, W.X.Y.Z is returned as a
32-bit value made up as follows:
 (W<<26) + (X<<20) + (Y<<6) + (Z)
 where Y is the build number and Z is the sub-build number

33 BASIC core version number

601 Flash File System: Data Segment: Total Space

602 Flash File System: Data Segment: Free Space

603 Flash File System: Data Segment: Deleted Space

611 Flash File System: FAT Segment: Total Space

612 Flash File System: FAT Segment: Free Space

613 Flash File System: FAT Segment: Deleted Space

631 NvRecord Memory Store Segment: Total Space

632 NvRecord Memory Store Segment: Free Space

633 NvRecord Memory Store Segment: Deleted Space

1000 BASIC compiler HASH value as a 32-bit decimal value

1001 How RAND() generates values: 0 for PRNG and 1 for hardware assist

1002 Minimum baudrate

1003 Maximum baudrate

1004 Maximum STRING size

//smartBASIC Error Code: 073D - > "RUN_INV_CIRCBUF_HANDLE"

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 14

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

1005
1: Run-time only implementation

3: Compiler included

2000

Reason for reset:

 8: Self-reset due to Flash Erase

 9: ATZ

 10: Self-reset due to smart BASIC app invoking function RESET()

2002 Timer resolution in microseconds

2003 Number of timers available in a smart BASIC application

2004 Tick timer resolution in microseconds

2005 LMP version number for BT 4.0 spec

2006 LMP sub-version number

2007 Chipset company ID allocated by BT SIG

2008 Returns the current TX power setting (see also 2018)

2009 Number of devices in trusted device database

2010 Number of devices in trusted device database with IRK

2011 Number of devices in trusted device database with CSRK

2012 Max number of devices that can be stored in trusted device database

2013 Maximum length of a GATT Table attribute in this implementation

2014 Total number of transmission buffers for sending attribute NOTIFIES

2015 Number of transmission buffers for sending attribute NOTIFIES ς free

2016

Radio activity of the baseband. A bit mask as follows:

 Bit 0: Advertising

 Bit 1: Connected as slave

 Bit 2: Initiating

 Bit 3: Scanning

 Bit 4: Connected as master

2018 Returns the TX power while pairing in progress (see also 2008)

2019
Default ring buffer length for notify/indicates in GATT client manager (see
BleGattcOpen function)

2020
Maximum ring buffer length for notify/indicates in GATT client manager (see
BleGattcOpen function)

2021 Stack tide mark in percent. Values near 100 are not good

2022 Stack size

2023 Initial Heap size

2040 Max number of devices that can be stored in trusted device database

2041 Number of devices in trusted device database

2042 Number of devices in trusted device database classed as Rolling

2043 Number of devices in trusted device database that can Persist

2100 Connect Scan interval (in milliseconds) used when connecting

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 15

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

2101 Connect Scan window (in milliseconds) used when connecting

2102 Connect slave latency in outgoing connection request

2105 Multi-Link Connection Interval periodicity in milliseconds

2150 Scan Interval (in milliseconds) used when connecting

2151 Scan Window (in milliseconds) used when connecting

2152 Type of scanning: Active or Passive

0x8000
to

0x81FF

Content of FICR register in the Nordic nrf51 chipset. In the nrf51 datasheet, in
the FICR section, all the FICR registers are listed in a table with each register
identified by an offset. For example, to read the Code memory page size which is
at offset 0x010, call SYSINFO(0x8010) or in interactive mode use AT I 0x8010.

Interactive
Command No

//Example :: SysInfo.sb (See in RM1xxCodeSnippets.zip)

PRINT " \ nSysInfo 1000 = ";SYSINFO (1000) // BASIC compiler HASH value

PRINT " \ nSysInfo 2003 = ";SYSINFO (2003) // Number of timers

PRINT " \ nSysInfo 0x8010 = ";SYSINFO (0x8010) // Code memory page size from FICR

Expected Output (For RM1xx):

SYSINFO is a core language function.

SYSINFO$

FUNCTION

Returns an informational string value depending on the value of varId argument.

SYSINFO$(varId)

Returns STRING. Value of information corresponding to integer ID requested.

Exceptions Á Local Stack Frame Underflow
Á Local Stack Frame Overflow

Arguments:
varId byVal varId AS INTEGER

An integer ID which is used to determine which information is to be returned as described below.

4
The Bluetooth address of the module. It is seven bytes long. First byte is 00 for IEEE public
address and 01 for random public address. Next six bytes are the address.

SysInfo 1000 = 1315489536

SysInfo 2003 = 8

SysInfo 0x8010 = 1024

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 16

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

14

A random public address unique to this module. May be the same value as in 4 above
unless AT+MAC was used to set an IEEE MAC address. It is seven bytes long. First byte is
00 for IEEE public address and 01 for random public address. Next six bytes are the
address.

Interactive
Command

No

//Example :: SysInfo.sb (See in RM1xxCodeSnippets.zip)

PRINT " \ nSysInfo$(4) = "; SYSINFO$(4) // address of module

PRINT " \ nSysInfo$(14) = "; SYSINFO$(14) // public random address

PRINT " \ nSysInfo$(0) = ";SYSINFO $(0)

 Expected Output:

SYSINFO$ is a core language function.

UART (Universal Asynchronous Receive Transmit)

UartOpen

FUNCTION

This function is used to open the main default UART peripheral using the parameters specified. See core
manual for further details.

UARTOPEN (baudrate,txbuflen,rxbuflen,stOptions)

stOptions

byVal stOptions AS STRING
This string (can be a constant) MUST be exactly 5 characters long where each character is used
to specify further comms parameters as follows.

Character Offset:

0

DTE/DCE role request:

Á T ς DTE
Á C ς DCE

1

Parity:

Á N ς None
Á O ς Odd (Not Available)
Á E ς Even (Not Available)

2 Databits: 8

3 Stopbits: 1

SysInfo$(4) = \ 01\ FA\ 84\ D7H\ D9\ 03

SysInfo$(14) = \ 01\ FA\ 84\ D7H\ D9\ 03

SysInfo$(0) =

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 17

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

4

Flow Control:

Á N ς None
Á H ς CTS/RTS hardware
Á X ς Xon/Xof (Not Available)

UartCloseEx

//Example :: UartCloseEx.sb (See in Firmware Zip file)

 DIM rc1

 DIM rc2

 UartClose ()

 rc1 = UartOpen (9600,0,0, "CN81H") //open as DTE at 300 baudrate, odd parity

 //8 databits, 1 stopbits, cts/rts flow

control

 PRINT "Laird"

 IF UartCloseEx (1) !=0 THEN

 PRINT " \ nData in at least one buffer. Uart Port not closed"

 ELSE

 rc1 = UartOpen (9600,0,0,"CN81H") //open as DTE at 300 baudrate, odd parity

 PRINT " \ nUart Port was closed"

 ENDIF

Expected Output:

UARTCLOSEEX is a core function.

UartSetRTS

The RM1xx module does not offer the capability to control the RTS pin as the underlying hardware does
not allow it. The function exists to enable porting of applications from platforms where an app has invoked
it.

UartBREAK

The RM1xx module does not offer the capability to send a BREAK signal.

If this feature is required, then the best way to expedite it is to put UART_TX and an I/O pin configured as
an output through an AND gate.

Laird

Data in at least one buffer. Uart Port not closed

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 18

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

For normal operation the general purpose output pin is set to logic high which means the output of the
AND gate follows the state of the UART_TX pin.

When a BREAK is to be sent, the general purpose pin is set to logic high which means the output of the
AND gate is low and remains low regardless of the state of the UART_TX pin.

I2C ς Two Wire Interface (TWI)

The RM1xx can only be configured as an I2C master with the additional constraint that it be the only
master on the bus and only 7-bit slave addressing is supported.

SPI Interface

The RM1xx module can only be configured as a SPI master.

4. CORE EXTENSIONS BUILT-IN ROUTINES

Miscellaneous Routines

AssertRM1xx

SUBROUTINE

¢Ƙƛǎ ŦǳƴŎǘƛƻƴΩǎ Ƴŀƛƴ ǳǎŜ ŎŀǎŜ ƛǎ ŘǳǊƛƴƎ smartBASIC source compilation and the presence of at least one
instance of this statement ensures that the smartBASIC application only fully compiles without errors on
a RM1xx module. This ensures that apps for other modules are not mistakenly loaded into the RM1xx.

ASSERTRM1xx()

Returns Not Applicable as it is a subroutine

Arguments None
Interactive
Command

No

AssertRM1xx () //Ensure loading on RM1xx only

 ASSERTRM1xx is an extension subroutine.

Input/Output Interface Routines

I/O and interface commands allow access to the physical interface pins and ports of the smartBASIC
modules. Most of these commands are applicable to the range of modules. However, some are dependent
on the actual I/O availability of each module.

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 19

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

GPIO Events

EVGPIOCHANn

Here, n is from 0 to N where N is platform dependent and an event is generated when a
preconfigured digital input transition occurs. The number of digital inputs that can auto-
generate is hardware dependent. For the RM1xx module, N can be 0,1,2 or 3.

Use GpioBindEvent() to generate these events.

See example for GpioBindEvent()

EVDETECTCHANn

Here, n is from 0 to N where N is platform dependent and an event is generated when

a preconfigured digital input transition occurs. The number of digital inputs that can
auto-generate is hardware dependent. For the RM1xx module, N can only be 0.

Use GpioAssignEvent() to generate these events.

See example for GpioAssignEvent()

GpioSetFunc

FUNCTION

This routine sets the function of the GPIO pin identified by the nSigNum argument.

The module datasheet contains a pinout table which denotes SIO (Special I/O) pins. The number
designated for that special I/O pin corresponds to the nSigNum argument.

GPIOSETFUNC (nSigNum, nFunction, nSubFunc)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments

nSigNum
byVal nSigNum AS INTEGER

The signal number as stated in the pinout table of the module.

nFunction

byVal nFunction AS INTEGER

Specifies the configuration of the GPIO pin as follows:

1 DIGITAL_IN

2 DIGITAL_OUT

3 ANALOG_IN

4 ANALOG_REF (not currently available on the RM1xx module)

5 ANALOG_OUT (not currently available on the RM1xx module)

nSubFunc

byVal nSubFunc INTEGER

Configures the pin as follows:

If nFunction == DIGITAL_IN

Bits 0..3

0x01 Pull down resistor (weak)

0x02 Pull up resistor (weak)

0x03 Pull down resistor (strong)

0x04 Pull up resistor (strong)

Else No pull resistors

Bits 4, 5

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 20

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

0x10 When in deep sleep mode, awake when this pin is LOW

0x20 When in deep sleep mode, awake when this pin is HIGH

Else No effect in deep sleep mode

Bits 8..31

Must be 0s

If nFuncType == DIGITAL_OUT

Values:

0 Initial output to LOW

1 Initial output to HIGH

2
Output is PWM (Pulse Width Modulated Output). See function GpioConfigPW() for
more configuration. The duty cycle is set using function GpioWrite().

3
Output is FREQUENCY. The frequency is set using function GpioWrite() where 0
switches off the output; any value in range 1..4000000 generates an output signal
with 50% duty cycle with that frequency.

Bits 4..6 (output drive capacity)

0 0 = Standard; 1 = Standard

1 0 = High; 1 = Standard

2 0 = Standard; 1 = High

3 0 = High; 1 = High

4 0 = Disconnect; 1 = Standard

5 0 = Disconnect; 1 = High

6 0 = Standard; 1 = Disconnect

7 0 = High; 1 = Disconnect

If nFuncType == ANALOG_IN

Á 0: = Use Default for system.
For RM1xx: 10 bit adc and 2/3rd scaling
0x13: = For RM1xx: 10 bit adc, 1/3rd scaling
0x11: = For RM1xx: 10 bit adc, unity scaling

0 Use the system default: 10-bit ADC, 2/3 scaling

0x13 10-bit ADC, 1/3 scaling

0x11 10-bit ADC, unity scaling

Note: The internal reference voltage is 1.2V with +/- 1.5% accuracy.

WARNINGΥ ¢Ƙƛǎ ǎǳōŦǳƴŎ ǾŀƭǳŜ ƛǎ ΨƎƭƻōŀƭΩ ŀƴŘ ƻƴŎŜ ŎƘŀƴƎŜŘ ǿƛƭƭ ŀǇǇƭȅ ǘƻ ŀƭƭ !5/ ƛƴǇǳǘǎΦ

Interactive Command: NO

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 21

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

//Example :: GpioSetFunc.sb (See in Firmware Zip file)

 PRINT GpioSetFunc (3,1,2) //Digital In Gpio pin 3, weak pull up resistor

 PRINT GpioSetFunc (4,3,0) //Analog In Gpio pin 4, default settings

 PRINT GpioSetFunc (5,1,0x12) //internal pull up on gpio5 and wake from deep sleep

 //when there is transition from high to low

Expected Output:

GPIOSETFUNC is a Module function.

GpioConfigPwm

FUNCTION

This routine configures the PWM (Pulse Width Modulation) of all output pins when they are set as a PWM
output using GpioSetFunc() function described above.

Note: ¢Ƙƛǎ ƛǎ ŀ ΨǎǘƛŎƪȅΩ ŎƻƴŦƛƎǳǊŀǘƛƻƴΤ ŎŀƭƭƛƴƎ ƛǘ ŀŦŦŜŎǘǎ ŀƭƭ ŎǳǊǊŜƴǘƭȅ ŎƻƴŦƛƎǳǊŜŘ t²a ƻǳǘǇǳǘǎΦ ²Ŝ
recommend that this is called once at the beginning of your application and not changed again
within the application unless all PWM outputs are deconfigured and then re-enabled after this
function is called.

The PWM output is generated using 32-bit hardware timers. The timers are clocked by a 1 MHz clock
source.

A PWM signal has a frequency and a duty cycle property; the frequency is set using this function and is
defined by the nMaxResolution parameter. For a given nMaxResolution value, given that the timer is
clocked using a 1 MHz source, the frequency of the generated signal is 1000000 divided by
nMaxResolution. Hence if nMinFreqHz is more than the 1000000/nMaxResolution, this function will fail
with a non-zero value.

The nMaxResolution can also be viewed as defining the resolution of the PWN output in the sense that
the duty cycle can be varied from 0 to nMaxResolution. The duty cycle of the PWM signal is modified using
the GpioWrite() command

For example, a period of 1000 generates an output frequency of 1KHz, a period of 500, and a frequency
of 2Khz etc.

On exit, the function returns with the actual frequency in the nMinFreqHz parameter.

GPIOCONFIGPWM (nMinFreqHz, nMaxResolution)

Returns
INTEGER, a result code.

Most typical value: 0x0000 (indicates a successful operation)

Arguments

nMinFreqHz byRef nMinFreqHz AS INTEGER

000

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 22

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

On entry this variable contains the minimum frequency desired for the PWM output. On
exit, if successful, it contains the actual frequency of the PWM output.

nMaxResolution byVal nMaxResolution INTEGER.

This specifies the duty cycle resolution and the value to set to get a 100% duty cycle.

Interactive
Command

No

 // Example :: GpioConfigPWM() (See in Firmware Zip file)

 DIM rc

 DIM nFreqHz, nMaxRes

 // we want a minimum frequency of 500Hz so that we can use a 100Hz low pass filter to

 // create an analogue output which has a 100Hz bandwidth

 nFreqHz = 500

 // we want a resolution of 1:1000 in the generated analogue output

 nMaxValUs = 1000

 PRINT GpioConfigPWM (nFreqHz,nMaxRes)

 PRINT " \ nThe actual frequency of the PWM output is " ;nFreqHz; " \ n"

 // now configure SIO2 pin as a PWM output

 PRINT GpioSetFunc (2,2,2) //3rd parameter is subfunc == PWM output

 // Set PWM output to 0%

 GpioWrite (2,0)

 // Set PWM output to 50%

 GpioWrite (2, (nMaxRes/2))

 // Set PWM output to 100%

 GpioWrite (2,nMaxRes) // any value >= nMaxRes will give a 100% duty cycle

 // Set PWM output to 33.333%

GpioWrite (2, (nMaxRes/3))

Expected Output:

GPIOCONFIGPWM is a Module function.

0

The actual frequency of the PWM output is 1000

0

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 23

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

GpioRead

FUNCTION

This routine reads the value from a SIO (special purpose I/O) pin.

The module datasheet contains a pinout table which mentions SIO (Special I/O) pins and the number
designated for that special I/O pin corresponds to the nSigNum argument.

GPIOREAD (nSigNum)

Returns
INTEGER, the value from the signal. If the signal number is invalid, it returns the value 0. For
digital pins, the value is 0 or 1. For ADC pins it is a value in the range of 0 to M where M is the
maximum based on the bit resolution of the analogue to digital converter.

Arguments

nSigNum byVal nSigNum INTEGER

The signal number as stated in the pinout table of the module.

Interactive
Command

No

//Example :: GpioRead.sb (See in Firmware Zip file)

 DIM signal

 signal = GpioRead (3)

 PRINT signal

Expected Output:

GPIOREAD is a Module function.

GpioWrite

SUBROUTINE

This routine writes a new value to the GPIO pin. If the pin number is invalid, nothing happens.

If the GPIO pin has been configured as a PWM output, then the nNewValue specifies a value in the range
0 to N where N is the maximum PWM value that generates a 100% duty cycle output (a constant high
signal) and N is a value that is configured using the function GpioConfigPWM().

If the GPIO pin has been configured as a FREQUENCY output, then the nNewValue specifies the desired
frequency in Hertz in the range 0 to 4000000. Setting a value of 0 makes the output a constant low value.
Setting a value greater than 4000000 clips the output to a 4 MHz signal.

GPIOWRITE (nSigNum, nNewValue)

Arguments

nSigNum byVal nSigNum INTEGER.

The signal number as stated in the pinout table of the module.

1

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 24

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

nNewValue byVal nNewValue INTEGER.

The value to be written to the port. If the pin is configured as digital, then 0 clears the pin and a
non-zero value sets it.

If the pin is configured as analogue ς value is written to the pin

If the pin is configured as a PWM ς value sets the duty cycle

If the pin is configured as a FREQUENCY ς value sets the frequency

Interactive
Command

No

//Example :: GpioWrite.sb (See in Firmware Zip file)

 DIM rc,dutycycle,freqHz,minFreq

 //set sio pin 1 to an output and initialise it to high

 PRINT GpioSetFunc (1,2,0) ; " \ n"

 //set sio pin 5 to PWM output

 minFreq = 500

 PRINT GpioConfigPWM (minFreq,1024) ; " \ n" //set max pwm value/resolution to 1:1024

 PRINT GpioSetFunc (5,2,2) ; " \ n"

 PRINT GpioSetFunc (6,2,3) ; " \ n\ n" //set sio pin 6 to Frequency output

 GpioWrite (18,0) //set pin 1 to low

 GpioWrite (18,1) //set pin 1 to high

 //Set the PWM output to 25%

 GpioWrite (5,256) //256 = 1024/4

 //Set the FREQ output to 4.236 Khz

 GpioWrite (6,4236)

 //Note you can generate a chirp output on sio 6 by starting a timer which expires

 //every 100ms and then in the timer handler call GpioWrite(6,xx) and then

 //increment xx by a certain value

Expected Output:

GPIOWRITE is a Module function.

GpioBindEvent

FUNCTION

This routine binds an event to a level transition on a specified special I/O line configured as a digital input
so that changes in the input line can invoke a handler in smart BASIC user code.

0000

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 25

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Note: In the RM1xx module, using this function results in over 1 mA of continuous current
consumption from the power supply. If power is important, use GpioAssignEvent() instead
which uses other resources to expedite an event.

GPIOBINDEVENT (nEventNum, nSigNum, nPolarity)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nEventNum byVal nEventNum INTEGER

The GPIO event number (in the range of 0 - N) which results in the event EVGPIOCHANn being
thrown to the smart BASIC runtime engine.

nSigNum byVal nSigNum INTEGER

The signal number as stated in the pinout table of the module.

nPolarity byVal nPolarity INTEGER

States the transition as follows:

0 Low to high transition

1 High to low transition

2 Either a low to high or high to low transition

Interactive
Command

No

 //Example :: GpioBindEvent.sb (See in Firmware Zip file)

 FUNCTION Btn0Press ()

 PRINT " \ nHello"

 ENDFUNC 0

 PRINT GpioBindEvent (0,16,1) //Bind event 0 to high low transition on sio16

(button0)

 ONEVENT EVGPIOCHAN0 CALL Btn0Press //When event 0 happens, call Btn0Press

 PRINT " \ nPress button 0"

 WAITEVENT

Expected Output:

GPIOBINDEVENT is a Module function.

0

Press button 0

Hello

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 26

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

GpioUnbindEvent

FUNCTION

This routine unbinds the runtime engine event from a level transition bound using GpioBindEvent().

GPIOUNBINDEVENT (nEventNum)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nEventNum byVal nEventNum INTEGER.

The GPIO event number (in the range of 0 - N) which is disabled so that it no longer generates
run-time events in smart BASIC.

Interactive
Command

No

//Example :: GpioUnbindEvent.sb (See in Firmware Zip file)

 FUNCTION Btn0Press ()

 PRINT " \ nHello"

 ENDFUNC 1

 FUNCTION Tmr0TimedOut ()

 PRINT " \ nNothing happened"

 ENDFUNC 0

 PRINT GpioBindEvent (0,16,1) ; " \ n"

 ONEVENT EVGPIOCHAN0 CALL Btn0Press

 ONEVENT EVTMR0 CALL Tmr0TimedOut

 PRINT GpioUnbindEvent (0) ; " \ n"

 PRINT " \ nPress button 0 \ n"

 TimerStart (0,8000,0)

 WAITEVENT

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 27

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

GPIOUNBINDEVENT is a Module function.

GpioAssignEvent

FUNCTION

This routine assigns an event to a level transition on a specified special I/O line configured as a digital
input. Changes in the input line can invoke a handler in smart BASIC user code

Note: In the RM1xx, this function results in approximately 4 uA of continuous current consumption
from the power supply. It is impossible to assign a polarity value which detects either level
transitions.

GPIOASSIGNEVENT (nEventNum, nSigNum, nPolarity)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nEventNum byVal nEventNum INTEGER.

The GPIO event number (in the range of 0 - N) which results in the event EVDETECTCHANn
being thrown to the smart BASIC runtime engine.

Note: A value of 0 is only valid for the RM1xx.

nSigNum byVal nSigNum INTEGER.

The signal number as stated in the pinout table of the module.

nPolarity byVal nPolarity INTEGER.

States the transition as follows:

0 Low to high transition

1 High to low transition

2
Either a low to high or high to low transition

Note: This is not available in the RM1xx module.

Interactive
Command

No

//Example :: GpioAssignEvent.sb (See in Firmware Zip file)

 FUNCTION Btn0Press ()

0

0

Press button 0

Nothing happened

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 28

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 PRINT " \ nHello"

 ENDFUNC 0

 PRINT GpioAssignEvent (0,16,1) //Assign event 0 to high low transition on

sio16 (button0)

 ONEVENT EVDETECTCHAN0 CALL Btn0Press //When event 0 is detected, call Btn0Press

 PRINT " \ nPress button 0"

 WAITEVENT

Expected Output:

GPIOASSIGNEVENT is a Module function.

GpioUnAssignEvent

FUNCTION

This routine unassigns the runtime engine event from a level transition assigned using GpioAssignEvent().

GPIOUNASSIGNEVENT (nEventNum)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nEventNum byVal nEventNum INTEGER.

The GPIO event number (in the range of 0 - N) which is disabled so that it no longer
generates run-time events in smart BASIC.

Note: A value of 0 is only valid for the RM1xx.

Interactive Command No

//Example :: GpioUnAssignEvent.sb (See in Firmware Zip file)

 FUNCTION Btn0Press ()

 PRINT " \ nHello"

 ENDFUNC 1

 FUNCTION Tmr0TimedOut ()

 PRINT " \ nNothing happened"

 ENDFUNC 0

 PRINT GpioAssignEvent (0,16,1) ; " \ n"

0

Press button 0

Hello

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 29

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 ONEVENT EVDETECTCHAN0 CALL Btn0Press

 ONEVENT EVTMR0 CALL Tmr0TimedOut

 PRINT GpioUnAssignEvent (0) ; " \ n"

 PRINT " \ nPress button 0 \ n"

 TimerStart (0,8000,0)

 WAITEVENT

Expected Output:

GPIOUNASSIGNEVENT is a Module function.

5. BLE EXTENSIONS BUILT-IN ROUTINES

Bluetooth Low Energy (BLE) extensions are specific to the RM1xx smart BASIC BLE module and provide a
high level managed interface to the underlying Bluetooth stack.

MAC Address

To address privacy concerns, there are four types of MAC addresses in a BLE device which can change as
needed. For example, an iPhone regularly changes its BLE MAC address and it always exposes only its
resolvable random address.

To manage this, the usual six octet MAC address is qualified on-air by a single bit which qualifies the MAC
address as public or random. If public, then the format is as defined by the IEEE organization. If random,
then it can be up to three types and this qualification is done using the upper two bits of the most
significant byte of the random MAC address. The exact details and format of how the specification
requires this to be managed is not relevant for the purpose of how BLE functionality as exposed in this
module; only details on how various API functions in smartBASIC expect MAC addresses to be provided is
described.

Where a MAC address is expected as a parameter (or provided as a response) it is always a STRING
variable. This variable is seven octets long where the first octet is the address type and the other six octets
are the usual MAC address in big endian format (so that most significant octet of the address is at offset
1), whether public or random.

The address type is:

0

0

Press button 0

Nothing happened

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 30

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

0 Public

1 Random Static

2 Random Private Resolvable

3 Random Private Non-Resolvable

All other values are illegal

For example, to specify a public address which has the MAC potion as 112233445566 then the STRING
variable contains seven octets 00112233445566 and a variable can be initialized using a constant string
by escaping as follows:

DIM address \00\11\22\33\44\55\66

Static random address 01C12233445566 (upper tow bits of MAC portion == 11)

Resolvable random address 02412233445566 (upper 2 bits of MAC portion == 01)

Non-resolvable address 03112233445566 (upper 2 bits of MAC portion == 00)

Note: The MAC address portion in smartBASIC is always in big endian format. If you sniff on-air
packets, the same six packets appear in little endian format, hence reverse order; you will not
see seven bytes, but a bit in the packet somewhere which specifies it to be public or random.

Events and Messages

EVBLE_CONN_TIMEOUT

This event is thrown when a connection attempt initiated by the BleConnect() function times out.

//See example for BleConnect()

EVBLE_ADV_REPORT

This event is thrown when an advert report is received whether successfully cached or not.

//See example for BleScanGetAdvReport.sb

EVBLE_FAST_PAGED

This event is thrown when an advert report is received of type ADV_DIRECT_IND and the advert had a
target address (InitA in the spec) which matches the address of this module.

//See example for BleScanGetPagerAddr.sb

EVBLE_SCAN_TIMEOUT

This event is thrown when a scanning procedure initiated by the BleScanStart() function times out.

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 31

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

//See example for BleScanStart()

EVBLEMSG

BASIC application when a significant BLE-related event occurs. It does so by throwing this message (as
opposed to an EVENT, which is akin to an interrupt and has no context or queue associated with it). The
message contains two parameters:BASIC application when a significant BLE-related event has occurred. It
does so by throwing this message (as opposed to an EVENT, which is akin to an interrupt and has no
context or queue associated with it). The message contains two parameters:BASIC application when a
significant BLE related event has occurred. It does so by throwing this message (as opposed to an EVENT,
which is akin to an interrupt and has no context or queue associated with it). The message contains two
parameters:

Á msgID ς Identifies what event was triggered
Á msgCtx ς Conveys some context data associated with that event.

The smart BASIC application must register a handler function which takes two integer arguments to be
able to receive and process this message.

Note: The messaging subsystem, unlike the event subsystem, has a queue associated with it and
unless that queue is full, pends all messages until they are handled. Only messages that have
handlers associated with them are inserted into the queue. This is to prevent messages that
are not handled from filling that queue. The list of triggers and associated context parameter
are described in Table 1.

Table 1: Triggers and associated context parameters

MsgID Description

0 A connection has been established and msgCtx is the connection handle.

1 A disconnection event and msgCtx identifies the handle.

2 Immediate Alert Service Alert. The 2nd parameter contains new alert level.

3 Link Loss Alert. The 2nd parameter contains new alert level.

4 A BLE Service Error. The 2nd parameter contains the error code.

5 Thermometer Client Characteristic Descriptor value has changed. (Indication enable state and msgCtx
contains new value: 0 for disabled, 1 for enabled)

6 Thermometer measurement indication has been acknowledged.

7 Blood Pressure Client Characteristic Descriptor value has changed. (Indication enable state and msgCtx
contains new value: 0 for disabled, 1 for enabled)

8 Blood Pressure measurement indication has been acknowledged.

9 Pairing in progress and display Passkey supplied in msgCtx.

10 A new bond has been successfully created.

11 Pairing in progress and authentication key requested. msgCtx is key type.

12 Heart Rate Client Characteristic Descriptor value has changed. (Notification enable state and msgCtx
contains new value: 0 for disabled, 1 for enabled)

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 32

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

MsgID Description

14 Connection parameters update and msgCtx is the conn handle.

15 Connection parameters update fail and msgCtx is the conn handle.

16 Connected to a bonded master and msgCtx is the conn handle.

17 A new pairing has replaced old key for the connection handle specified.

18 The connection is now encrypted and msgCtx is the conn handle.

19 The supply voltage has dropped below that specified in the most recent call of
SetPwrSupplyThreshMv() and msgCtx is the current voltage in millivolts.

20 The connection is no longer encrypted and msgCtx is the conn handle

21 The device name characteristic in the GAP service of the local GATT table has been written by the
remote GATT client.

Note: Message ID 13 is reserved for future use

The following is an example of how these messages can be used:

//Example :: EvBleMsg.sb (See in RM1xxCodeSnippets.zip)

 DIM addr$: addr$= ""

 DIM rc

 //==

 // This handler is called when there is a BLE message

 //==

 FUNCTION HndlrBleMsg (BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER)

 SELECT nMsgId

 CASE 0

 PRINT " \ nBle Connection " ;nCtx

 rc = BleAuthenticate (nCtx)

 CASE 1

 PRINT " \ nDisconnected " ;nCtx; " \ n"

 CASE 18

 PRINT " \ nConnection " ;nCtx; " is now encrypted"

 CASE 16

 PRINT " \ nConnected to a bonded master"

 CASE 17

 PRINT " \ nA new pairing has replaced the old key" ;

 CASE ELSE

 PRINT " \ nUnknown Ble Msg"

 ENDSELECT

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 33

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 ENDFUNC 1

 FUNCTION HndlrBlrAdvTimOut ()

 PRINT " \ nAdvert stopped via timeout"

 PRINT " \ nExiting..."

 ENDFUNC 0

 FUNCTION Btn0Press ()

 PRINT " \ nExiting..."

 ENDFUNC 0

 PRINT GpioSetFunc (16,1,0x12)

 PRINT GpioBindEvent (0,16,0)

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVBLE_ADV_TIMEOUT CALL HndlrBlrAdvTimOut

 ONEVENT EVGPIOCHAN0 CALL Btn0Press

 // start adverts

 IF BleAdvertStart (0,addr$,100,10000,0) ==0 THEN

 PRINT " \ nAdverts Started"

 PRINT " \ nPress button 0 to exit \ n"

 ELSE

 PRINT " \ n\ nAdvertisement not successful"

 ENDIF

 WAITEVENT

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 34

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output (When connection made with RM1xx):

Expected Output (When no connection made):

EVDISCON

This event is thrown when there is a disconnection. It comes with two parameters:

Á Parameter 1 ς Connection handle
Á Parameter 2 ς The reason for the disconnection

For example: The reason can be 0x08 which signifies a link connection supervision timeout which is used
in the Proximity Profile.

A full list of Bluetooth HCI result codes for the reason of disconnection can be determined and provided
in this document here.

 //Example :: EvDiscon.sb (See in RM1xxCodeSnippets.zip)

 DIM addr$: addr$= ""

 FUNCTION HndlrBleMsg (BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER)

 IF nMsgID==0 THEN

 PRINT " \ nNew Connection " ;nCtx

 ENDIF

Adverts Started

Press button 0 to exit

BLE Connection 3634

Connected to a bonded master

Connection 3634 is now encrypted

A new pairing has replaced the old key

Disconnected 3634

Exiting...

Adverts Started

Press button 0 to exit

Advert stopped via timeout

Exiting...

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 35

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 ENDFUNC 1

 FUNCTION Btn0Press ()

 PRINT " \ nExiting..."

 ENDFUNC 0

 FUNCTION HndlrDiscon (BYVAL hConn AS INTEGER, BYVAL nRsn AS INTEGER) AS INTEGER

 PRINT " \ nConnection " ;hConn; " Closed: 0x" ;nRsn

 ENDFUNC 0

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVDISCON CALL HndlrDiscon

 // start adverts

 IF BleAdvertStart (0,addr$,100,10000,0) ==0 THEN

 PRINT " \ nAdverts Started \ n"

 ELSE

 PRINT " \ n\ nAdvertisement not successful"

 ENDIF

 WAITEVENT

Expected Output:

EVCHARVAL

This event is thrown when a characteristic has been written to by a remote GATT client. It comes with
three parameters which are the characteristic handle that was returned when the characteristic was
registered using the function BleCharCommit() the Offset and Length of the data from the characteristic
value.

 //Example :: EvCharVal.sb (See in RM1xxCodeSnippets.zip)

 DIM hMyChar,rc,at$,conHndl

Adverts Started

New Connection 2915

Connection 2915 Closed: 0x19

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 36

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //==

 // Initialise and instantiate service, characteristic, start adverts

 //==

 FUNCTION OnStartup ()

 DIM rc, hSvc, attr$, adRpt$, addr$, scRpt$: attr$= "Hi"

 //commit service

 rc= BleSvcCommit (1,BleHandleUuid16 (0x18EE) ,hSvc)

 //initialise char, write/read enabled, accept signed writes

 rc= BleCharNew (0x0A,BleHandleUuid16 (1) ,BleAttrMetaData (1,1,20,0,rc) ,0,0)

 //commit char initialised above, with initial value "hi" to service 'hSvc'

 rc= BleCharCommit (hSvc,attr$,hMyChar)

 rc= BleScanRptInit (scRpt$)

 //Add 1 service handle to scan report

 //rc=BleAdvRptAddUuid16(scRpt$,0x18EE, - 1, - 1, - 1, - 1, - 1)

 //commit reports to GATT table - adRpt$ is empty

 rc= BleAdvRptsCommit (adRpt$,scRpt$)

 rc= BleAdvertStart (0,addr$,20,300000,0)

 ENDFUNC rc

 //==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections ()

 rc= BleDisconnect (conHndl)

 rc= BleAdvertStop ()

 ENDSUB

 //==

 // Ble event handler

 //==

 FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT " \ n\ n--- Disconnected from client"

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 37

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT " \ n--- Connected to client"

 ENDIF

 ENDFUNC 1

 //==

 // New char value handler

 //==

 FUNCTION HandlerCharVal (BYVAL charHandle, BYVAL offset, BYVAL len)

 DIM s$

 IF charHandle == hMyChar THEN

 PRINT " \ n" ;len; " byte(s) have been written to char value attribute from

offset " ;offset

 rc= BleCharValueRead (hMyChar,s$)

 PRINT " \ nNew Char Value: " ;s$

 ENDIF

 CloseConnections ()

 ENDFUNC 1

 ONEVENT EVCHARVAL CALL HandlerCharVal

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 IF OnStartup () ==0 THEN

 rc = BleCharValueRead (hMyChar,at$)

 PRINT " \ nValue of the characteristic is " ;at$

 PRINT " \ nSend a new value to write to the characteristic \ n"

 ELSE

 PRINT " \ nFailure OnStartup"

 ENDIF

 WAITEVENT

 PRINT " \ nExiting..."

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 38

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

EVCHARHVC

This event is thrown when a value sent via an indication to a client gets acknowledged. It comes with one
parameter ς the characteristic handle that was returned when the characteristic was registered using the
function BleCharCommit().

// Example :: EVCHA RHVC charHandle

// See example that is provided for EVCHARCCCD

EVCHARCCCD

This event is thrown when the client writes to the CCCD descriptor of a characteristic. It comes with two
parameters:

Á The characteristic handle returned when the characteristic was registered with BleCharCommit()
Á The new 16-bit value in the updated CCCD attribute.

//Example :: EvCharCccd.sb (See in RM1xxCodeSnippets.zip)

 DIM hMyChar,rc,at$,conHndl

 //==

 // Initialise and instantiate service, characteristic, start adverts

 //==

 FUNCTION OnStartup ()

 DIM rc, hSvc, metaSuccess, at$, attr$, adRpt$, addr$, scRpt$

The characteristicôs value is Hi

Write a new value to the characteristic

--- Connected to client

5 byte(s) have been written to char value attribute from offset 0

New Char Value: Hello

--- Disconnected from client

Exiting...

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 39

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 attr$= "Hi"

 DIM svcUuid : svcUuid=0x18EE

 DIM charUuid : charUuid = BleHandleUuid16 (1)

 DIM charMet : charMet = BleAttrMetaData (1,1,20,0,metaSuccess)

 DIM hSvcUuid : hSvcUuid = BleHandleUuid16 (svcUuid)

 DIM mdCccd : mdCccd = BleAttrMetadata (1,1,2,0,rc) //CCCD metadata for char

 //Commit svc with handle 'hSvcUuid'

 rc= BleSvcCommit (1,hSvcUuid,hSvc)

 //initialise char, write/read enabled, accept signed writes, indicatable

 rc= BleCharNew (0x6A,charUuid,charMet,mdCccd,0)

 //commit char initialised above, with initial value "hi" to service 'hMyChar'

 rc= BleCharCommit (hSvc,attr$,hMyChar)

 rc= BleScanRptInit (scRpt$)

 //Add 1 service handle to scan report

 rc= BleAdvRptAddUuid16 (scRpt$,0x18EE, - 1, - 1, - 1, - 1, - 1)

 //commit reports to GATT table - adRpt$ is empty

 rc= BleAdvRptsCommit (adRpt$,scRpt$)

 rc= BleAdvertStart (0,addr$,20,300000,0)

 rc= GpioBindEvent (1,16,1) //Channel 1, bind to low transition on GPIO pin 16

 ENDFUNC rc

 //==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections ()

 rc= BleDisconnect (conHndl)

 rc= BleAdvertStop ()

 rc= GpioUnbindEvent (1)

 ENDSUB

 //==

 // Ble event handler

 //==

 FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 40

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 PRINT " \ n\ n--- Disconnected from client"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT " \ n--- Connected to client"

 ENDIF

 ENDFUNC 1

 //==

 // Indication acknowledgement from client handler

 //==

 FUNCTION HndlrCharHvc (BYVAL charHandle AS INTEGER) AS INTEGER

 IF charHandle == hMyChar THEN

 PRINT " \ nGot confirmation of recent indication"

 ELSE

 PRINT " \ nGot confirmation of some other indication: " ;charHandle

 ENDIF

 ENDFUNC 1

 //==

 //handler to service button 0 pressed

 //==

 FUNCTION HndlrBtn0Pr () AS INTEGER

 CloseConnections ()

 ENDFUNC 1

 //==

 // CCCD descriptor written handler

 //==

 FUNCTION HndlrCharCccd (BYVAL charHandle, BYVAL nVal) AS INTEGER

 DIM value$

 IF charHandle==hMyChar THEN

 IF nVal & 0x02 THEN

 PRINT " \ nIndications have been enabled by client"

 value$= "hello"

 IF BleCharValueIndicate (hMyChar,value$) !=0 THEN

 PRINT " \ nFailed to indicate new value"

 ENDIF

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 41

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 ELSE

 PRINT " \ nIndications have been disabled by client"

 ENDIF

 ELSE

 PRINT " \ nThis is for some other characteristic"

 ENDIF

 ENDFUNC 1

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVCHARHVC CALL HndlrCharHvc

 ONEVENT EVCHARCCCD CALL HndlrCharCccd

 ONEVENT EVGPIOCHAN1 CALL HndlrBtn0Pr

 IF OnStartup () ==0 THEN

 rc = BleCharValueRead (hMyChar,at$)

 PRINT " \ nCharacteristic Value " ;at$

 PRINT " \ nYou can write to the CCCD characteristic."

 PRINT " \ nThe RM1xx will then indicate a new characteristic value \ n"

 PRINT " \ nPress button 0 to exit"

 ELSE

 PRINT " \ nFailure OnStartup"

 ENDIF

 WAITEVENT

 PRINT " \ nExiting..."

EVCHARSCCD

This event is thrown when the client writes to the SCCD descriptor of a characteristic. It comes with two
parameters:
Á The characteristic handle that was returned when the characteristic was registered using the

function BleCharCommit()
Á The new 16-bit value in the updated SCCD attribute

The SCCD is used to manage broadcasts of characteristic values.

 //Example :: EvCharSccd.sb (See in RM1xxCodeSnippets.zip)

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 42

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 DIM hMyChar,rc,at$,conHndl

 //===

 // Initialise and instantiate service, characteristic, start adverts

 //===

 FUNCTION OnStartup ()

 DIM rc, hSvc, at$, attr$, adRpt$, addr$, scRpt$

 attr$= "Hi"

 DIM charMet : charMet = BleAttrMetaData (1,0,20,0,rc)

 DIM mdSccd : mdSccd = BleAttrMetadata (1,1,2,0,rc)

 //Commit svc with handle 'hSvcUuid'

 rc= BleSvcCommit (1,BleHandleUuid16 (0x18EE) ,hSvc)

 //initialise char, read enabled, accept signed writes, broadcast capable

 rc= BleCharNew (0x03,BleHandleUuid16 (1) ,charMet,0,mdSccd)

 //commit char initialised above, with initial value "hi" to service 'hMyChar'

 rc= BleCharCommit (hSvc,attr$,hMyChar)

 rc= BleAdvRptInit (adRpt$,0x02,0,20)

 //commit reports to GATT table - adRpt$ is empty

 rc= BleAdvRptsCommit (adRpt$,scRpt$)

 rc= BleAdvertStart (0,addr$,20,300000,0)

 rc= GpioBindEvent (1,16,1) //Channel 1, bind to low transition on GPIO pin 16

 ENDFUNC rc

 //==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections ()

 rc= BleDisconnect (conHndl)

 rc= BleAdvertStop ()

 rc= GpioUnbindEvent (1)

 ENDSUB

 //===

 // Ble event handler

 //===

 FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 43

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 PRINT " \ n\ n--- Disconnected from client"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT " \ n--- Connected to client"

 ENDIF

 ENDFUNC 1

 //===

 //handler to service button 0 pressed

 //===

 FUNCTION HndlrBtn0Pr () AS INTEGER

 CloseConnections ()

 ENDFUNC 1

 //==

 // CCCD descriptor written handler

 //==

 FUNCTION HndlrCharSccd (BYVAL charHandle, BYVAL nVal) AS INTEGER

 DIM value$

 IF charHandle==hMyChar THEN

 IF nVal & 0x01 THEN

 PRINT " \ nBroadcasts have been enabled by client"

 ELSE

 PRINT " \ nBroadcasts have been disabled by client"

 ENDIF

 ELSE

 PRINT " \ nThis is for some other characteristic"

 ENDIF

 ENDFUNC 1

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVCHARSCCD CALL HndlrCharSccd

 ONEVENT EVGPIOCHAN1 CALL HndlrBtn0Pr

 IF OnStartup () ==0 THEN

 rc = BleCharValueRead (hMyChar,at$)

 PRINT " \ nCharacteristic Value: " ;at$

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 44

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 PRINT " \ nYou can write to the SCCD attribute."

 PRINT " \ n--- Press button 0 to exit \ n"

 ELSE

 PRINT " \ nFailure OnStartup"

 ENDIF

 WAITEVENT

 PRINT " \ nExiting..."

EVCHARDESC

This event is thrown when the client writes to writable descriptor of a characteristic which is not a CCCD
or SCCD (CCCD and SCCD are catered for with their own dedicated messages). It comes with two
parameters:

Á The characteristic handle that was returned when the characteristic was registered using the
function BleCharCommit()

Á An index into an opaque array of handles managed inside the characteristic handle

Both parameters are supplied as-is as the first two parameters to the function BleCharDescRead().

 //Example :: EvCharDesc.sb (See in RM1xxCodeSnippets.zip)

 DIM hMyChar,rc,at$,conHndl, hOtherDescr

 //==

 // Initialise and instantiate service, characteristic, start adverts

 //==

 Sub OnStartup ()

 DIM rc, hSvc, at$, adRpt$, addr$, scRpt$, hOtherDscr,attr$, attr2$

 attr$= "Hi"

 DIM charMet : charMet = BleAttrMetaData (1,1,20,0,rc)

 //Commit svc with handle 'hSvcUuid'

 rc= BleSvcCommit (1,BleHandleUuid16 (0x18EE) ,hSvc)

 //initialise char, read/write enabled, accept signed writes

 rc= BleCharNew (0x4A,BleHandleUuid16 (1) ,charMet,0,0)

 //Add another descriptor

 attr$= "descr_value"

 rc= BleCharDescAdd (0x2999,attr$,BleAttrMetadata (1,1,20,0,rc))

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 45

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //commit char initialised above, with initial value "hi" to service 'hMyChar'

 attr2$= "char value"

 rc= BleCharCommit (hSvc,attr2$,hMyChar)

 rc= BleAdvRptInit (adRpt$,0x02,0,20)

 rc= BleScanRptInit (scRpt$)

 //get UUID handle for other descriptor

 hOtherDscr= BleHandleUuid16 (0x2905)

 //Add 'hSvc','hMyChar' and the other descriptor to the advert report

 rc= BleAdvRptAddUuid16 (adRpt$,0x18EE,0x2905, - 1, - 1, - 1, - 1)

 rc= BleAdvRptAddUuid16 (scRpt$,0x2905, - 1, - 1, - 1, - 1, - 1)

 //commit reports to GATT table - adRpt$ is empty

 rc= BleAdvRptsCommit (adRpt$,scRpt$)

 rc= BleAdvertStart (0,addr$,20,300000,0)

 rc= GpioBindEvent (1,16,1) //Channel 1, bind to low transition on GPIO pin 16

 ENDSUB

 //==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections ()

 rc= BleDisconnect (conHndl)

 rc= BleAdvertStop ()

 rc= GpioUnbindEvent (1)

 ENDSUB

 //==

 // Ble event handler

 //==

 FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT " \ n\ n--- Disconnected from client"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT " \ n--- Connected to client"

 ENDIF

 ENDFUNC 1

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 46

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //==

 //handler to service button 0 pressed

 //==

 FUNCTION HndlrBtn0Pr () AS INTEGER

 CloseConnectio ns ()

 ENDFUNC 1

 //==

 // Client has written to writeable descriptor

 //==

 FUNCTION HndlrCharDesc (BYVAL charHandle, BYVAL hDesc) AS INTEGER

 IF charHandle == hMyChar THEN

 PRINT " \ n ::Char Handle: " ;charHandle

 PRINT " \ n ::Descriptor Index: " ;hDesc

 PRINT " \ nThe new descriptor value is then read using the function

BleCharDescRead()"

 ELSE

 PRINT " \ nThis is for some other characteristic"

 ENDIF

 ENDFUNC 1

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVCHARDESC CALL HndlrCharDesc

 ONEVENT EVGPIOCHAN1 CALL HndlrBtn0Pr

 OnStartup ()

 PRINT " \ nWrite to the User Descriptor with UUID 0x2999"

 PRINT " \ n--- Press button 0 to exit \ n"

 WAITEVENT

 PRINT " \ nExiting..."

EVNOTIFYBUF

When in a connection and attribute data is sent to the GATT client using a notify procedure (such as the
function BleCharValueNotify()) or when a Write_with_no_response is sent by the GATT client to a remote
server, they are stored in temporary buffers in the underlying stack. There is finite number of these

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 47

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

temporary buffers and if they are exhausted, the notify function or the write_with_no_resp command
will fail with a result code of 0x6803 (BLE_NO_TX_BUFFERS). Once the attribute data is transmitted over
the air, given there are no acknowledges for Notify messages, the buffer is freed to be reused.

This event is thrown when at least one buffer has been freed; the smartBASIC application can then handle
this event to retrigger the data pump for sending data using notifies or writes_with_no_resp commands.

Note: When sending data using Indications, this event is not thrown because those messages have
to be confirmed by the client which results in a EVCHARHVC message to the smartBASIC
application. Likewise, writes which are acknowledged also do not consume these buffers.

 //Example :: EvNotifyBuf.sb (See in RM1xxCodeSnippets. zip)

 DIM hMyChar,rc,at$,conHndl,ntfyEnabled

 //==

 // Initialise and instantiate service, characteristic, start adverts

 //==

 FUNCTION OnStartup ()

 DIM rc, hSvc, at$, attr$, adRpt$, addr$, scRpt$

 attr$= "Hi"

 DIM mdCccd : mdCccd = BleAttrMetadata (1,1,2,0,rc) //CCCD metadata for char

 //Commit svc with handle 'hSvcUuid'

 rc= BleSvcCommit (1,BleHandleUuid16 (0x18EE) ,hSvc)

 //initialise char, write/read enabled, accept signed writes, notifiable

 rc= BleCharNew (0x12,BleHandleUuid16 (1) ,BleAttrMetaData (1,0,20,0,rc) ,mdCccd,0)

 //commit char initialised above, with initial value "hi" to service 'hMyChar'

 rc= BleCharCommit (hSvc,attr$,hMyChar)

 rc= BleScanRptInit (scRpt$)

 //Add 1 service handle to scan report

 rc= BleAdvRptAddUuid16 (scRpt$,0x18EE, - 1, - 1, - 1, - 1, - 1)

 //commit reports to GATT table - adRpt$ is empty

 rc= BleAdvRptsCommit (adRpt$,scRpt$)

 rc= BleAdvertStart (0,addr$,50,0,0)

 ENDFUNC rc

 //==

 // Close connections so that we can run another app without problems

 //==

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 48

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 SUB CloseConnections ()

 rc= BleDisconnect (conHndl)

 rc= BleAdvertStop ()

 ENDSUB

 SUB SendData ()

 DIM tx$, count

 IF ntfyEnabled then

 PRINT " \ n--- Notifying"

 DO

 tx$= "SomeData"

 rc= BleCharValueNotify (hMyChar,tx$)

 count=count+1

 UNTIL rc!=0

 PRINT " \ n--- Buffer full"

 PRINT " \ nNotified " ;count; " times"

 ENDIF

 ENDSUB

 //==

 // Ble event handler

 //==

 FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==0 THEN

 PRINT " \ n--- Connected to client"

 ELSEIF nMsgID THEN

 PRINT " \ n--- Disconnected from client"

 EXITFUNC 0

 ENDIF

 ENDFUNC 1

 //==

 // Tx Buffer free handler

 //==

 FUNCTION HndlrNtfyBuf ()

 SendData ()

 ENDFUNC 0

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 49

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //==

 // CCCD descriptor written handler

 //==

 FUNCTION HndlrCharCccd (BYVAL charHandle, BYVAL nVal) AS INTEGER

 DIM value$,tx$

 IF charHandle==hMyChar THEN

 IF nVal THEN

 PRINT " : Notifications have been enabled by client"

 ntfyEnabled=1

 tx$= "Hello"

 rc= BleCharValueNotify (hMyChar,tx$)

 ELSE

 PRINT " \ nNotifications have been disabled by client"

 ntfyEnabled=0

 ENDIF

 ELSE

 PRINT " \ nThis is for some other characteristic"

 ENDIF

 ENDFUNC 1

 ONEVENT EVNOTIFYBUF CALL HndlrNtfyBuf

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVCHARCCCD CALL HndlrCharCccd

 IF OnStartup () ==0 THEN

 rc = BleCharValueRead (hMyChar,at$)

 PRINT " \ nYou can connect and write to the CCCD characteristic."

 PRINT " \ nThe RM1xx will then send you data until buffer is full \ n"

 ELSE

 PRINT " \ nFailure OnStartup"

 ENDIF

 WAITEVENT

 CloseConnections ()

 PRINT " \ nExiting..."

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 50

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

Miscellaneous Functions

This section describes all BLE-related functions that are not related to advertising, connection, security
manager, or GATT.

BleTxPowerSet

FUNCTION

This function sets the power of all packets that are transmitted subsequently.

The actual value is determined by scanning through the value list (4, 0, -4, -8, -12, -16, -20, -30, -55) so
that the highest value in the list which is less than the desired value is set. Note that if desired value is less
than
-55 then -55 is selected.

For example, setting 1000 results in +4; -3 results in -4; -100 results in -55.

At any time SYSINFO(2008) returns the actual transmit power setting. Or, when in command mode, use
the command AT I 2008.

BLETXPOWERSET)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nTxPower byVal nTxPower AS INTEGER.

Specifies the new transmit power in dBm units to be used for all subsequent Tx packets.

The actual value is determined by scanning through the value list (4, 0, -4, -8, -12, -16, -20, -30,
-55) so that the highest value in the list which is less than the desired value is set. Note that if
desired value is less than
-55 then -55 is selected.

Interactive
Command

No

You can connect and write to the CCCD characteristic.

The RM1xx will then send you data until buffer is full

--- Connected to client

Notifications have been disabled by clien t : Notifications have been enabled

by client

--- Notifying

--- Buffer full

Notified 1818505336 times

Exiting...

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 51

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

//Example :: BleTxPowerSet.sb (See in RM1xxCodeSnipp ets.zip)

DIM rc,dp

dp=1000 : rc = BleTxPowerSet (dp)

PRINT " \ nrc = " ;rc

PRINT " \ nTx power : desired= " ;dp, " actual= " ; SysInfo (2008)

dp=8 : rc = BleTxPowerSet (dp)

PRINT " \ nTx power : desired= " ;dp, " " , " actual= " ; SysInfo (2008)

dp=2 : rc = BleTxPowerSet (dp)

PRINT " \ nTx power : desired= " ;dp, " " , " actual= " ; SysInfo (2008)

dp=- 10 : rc = BleTxPowerSet (dp)

PRINT " \ nTx power : desired= " ;dp, " " , " actual= " ; SysInfo (2008)

dp=- 25 : rc = BleTxPowerSet (dp)

PRINT " \ nTx power : desired= " ;dp, " " , " actual= " ; SysInfo (2008)

dp=- 45 : rc = BleTxPowerSet (dp)

PRINT " \ nTx power : desired= " ;dp, " " , " actual= " ; SysInfo (2008)

dp=- 1000 : rc = BleTxPowerSet (dp)

PRINT " \ nTx power : desired= " ;dp, " actual= " ; SysInfo (2008)

Expected Output:

BLETXPOWERSET is an extension function.

BleTxPwrWhilePairing

FUNCTION

This function sets the transmit power of all packets that are transmitted while a pairing is in progress. This
mode of pairing is referred to as Whisper Mode Pairing. The actual value is clipped to the transmit power
for normal operation which is set using BleTxPowerSet() function.

rc = 0

Tx power : desired= 1000 actual= 4

Tx power : desired= 8 actual= 4

Tx power : desired= 2 actual= 0

Tx power : desired= - 10 actual= - 12

Tx power : desired= - 25 actual= - 30

Tx power : desired= - 45 actual= - 55

Tx power : desired= - 1000 actual= - 55

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 52

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

The actual value is determined by scanning through the value list (4, 0, -4, -8, -12, -16, -20, -30, -55) so
that the highest value in the list which is less than the desired value is set. Note that if desired value is less
than
-55, then -55 is selected.

For example, setting 1000 results in +4; -3 results in -4; -100 results in -55.

At any time SYSINFO(2008) returns the actual transmit power setting. Or, when in command mode, use
the command AT I 2008.

BLETXPWRWHILEPAIRING)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nTxPower byVal nTxPower AS INTEGER.

Specifies the new transmit power in dBm units to be used for all subsequent Tx packets.

The actual value is determined by scanning through the value list (4, 0, -4, -8, -12, -16, -20, -30,
-55) so that the highest value in the list which is less than the desired value is set. Note that if
desired value is less than
-55 then -55 is selected.

Interactive
Command

No

//Example :: BleTxPwrWhilePairing.sb (See in RM1xxCodeSnippets.zip)

DIM rc,dp

dp=1000 : rc = BleTxPwrWhilePairing (dp)

PRINT " \ nrc = " ;rc

PRINT " \ nTx power while pairing: desired= " ;dp, " actual= " ; SysInfo (2018)

dp=8 : rc = BleTxPwrWhilePairing (dp)

PRINT " \ nTx power while pairing: desired= " ;dp, " " , " actual= " ; SysInfo (2018)

dp=2 : rc = BleTxPwrWhilePairing (dp)

PRINT " \ nTx power while pairing: desired= " ;dp, " " , " actual= " ; SysInfo (2018)

dp=- 10 : rc = BleTxPwrWhilePairing (dp)

PRINT " \ nTx power while pairing: desired= " ;dp, " actual= " ; SysInfo (2018)

dp=- 25 : rc = BleTxPwrWhilePairing (dp)

PRINT " \ nTx power while pairing: desired= " ;dp, " actual= " ; SysInfo (2018)

dp=- 45 : rc = BleTxPwrWhilePairing (dp)

PRINT " \ nTx power while pairing: desired= " ;dp, " actual= " ; SysInfo (2018)

dp=- 1000 : rc = BleTxPwrWhilePairing (dp)

PRINT " \ nTx power while pairing: desired= " ;dp, " actual= " ; SysInfo (2018)

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 53

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

BLETXPOWERSET is an extension function.

BleConfigDcDc

SUBROUTINE

This routine is used to configure the DC to DC converter to one of three states: OFF, ON, or AUTOMATIC

Note: Until a future revision when the chipset vendor has fixed a hardware issue at the silicon level,
this function does not function as stated and any nNewState value are interpreted as OFF.

BLECONFIGDCDCnNewState)

Returns None

Arguments

nNewStat
e

byVal nNewState AS INTEGER.
Configure the internal DC to DC converter as follows:

0 Off

2 Auto

All other values On

Interactive
Command

No

BleConfigDcDc (2) //Set for automatic operation

BLECONFIGDCDC is an extension function.

Advertising Functions

Note: The RM1xx module is NOT capable of being a peripheral device and so, although the functions
described below exist, most return an error. They only function as described in the RM1xx
module, or in the future in a module with a combined central and peripheral stack.

rc = 0

Tx power while pairing: desired= 1000 actual= 4

Tx power while pairing: desired= 8 actual= 4

Tx power while pairing: desired= 2 actual= 0

Tx power while pairing: desired= - 10 actual= - 12

Tx power while pairing: desired= - 25 actual= - 30

Tx power while pairing: desired= - 45 actual= - 55

Tx power while pairing: desired= - 1000 actual= - 55

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 54

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

An advertisement consists of a packet of information with a header identifying it as one of four types
along with an optional payload that consists of multiple advertising records, referred to as AD in the rest
of this manual.

Each AD record consists of up to three fields:

Á First field ς One octet in length and contains the number of octets that follow it that belong to that
record

Á Second field ς One octet and is a tag value which identifies the type of payload that starts at the
next octet. Hence the payload data is length ς 1.

A special NULL AD record consists of only one field ς the length field when it contains just the 00 value.

The specification also allows custom AD records to be created using the Manufacturer Specific Data AD
record.

Refer to the Supplement to the Bluetooth Core Specification, Version 1, Part A which has the latest list of
all AD records. You must register as at least an Adopter, which is free, to gain access to this information.
It is available at https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=245130

BleAdvertStart

FUNCTION

This function causes a BLE advertisement event as per the Bluetooth Specification. An advertisement
event consists of an advertising packet in each of the three advertising channels.

The type of advertisement packet is determined by the nAdvType argument and the data in the packet is
initialized, created, and submitted by the BLEADVRPTINIT, BLEADVRPTADDxxx, and BLEADVRPTCOMMIT
functions respectively.

If the Advert packet type (nAdvType) is specified as 1 (ADV_DIRECT_HIGH_DUTY_CYCLE) then the
peerAddr$ string must not be empty and should be a valid address. When advertising with this packet
type, the timeout is automatically set to 1280 milliseconds.

If the Advert packet type (nAdvType) is specified as 4 (ADV_DIRECT_LOW_DUTY_CYCLE) then the
peerAddr$ string must not be empty and should be a valid address. When advertising with this packet
type, the timeout is as per the interval and timeout values specified.

When filter policy is enabled, the whitelist consisting of all bonded masters is submitted to the underlying
stack so that only those bonded masters result in scan and connection requests being serviced.

Note: nAdvTimeout is rounded up to the nearest 1000 msec.

BLEADVERTSTART (nAdvType, peerAddr$, nAdvInterval, nAdvTimeout, nFilterPolicy)

Returns

INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

If a 0x6A01 resultcode is received, it implies whitelist has been enabled but the Flags AD in
the advertising report is set for limited and/or general discoverability. The solution is to
resubmit a new advert report which is made up so that the nFlags argument to
BleAdvRptInit() function is 0.

http://ews-support.lairdtech.com/
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=245130

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 55

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

The BT 4.0 spec disallows discoverability when a whitelist is enabled during advertisement
see Volume 3, Sections 9.2.3.2 and 9.2.4.2.

Arguments

nAdvType byVal nAdvType AS INTEGER.
Specifies the advertisement type as follows:

0 ADV_IND ς Invites connection requests

1

ADV_DIRECT_HIGH_DUTY_CYCLE ς Invites connection from addressed device
using high duty cycle timing. nAdvInternal and nAdvTimeout are ignored and
interval is set to 3.75ms and Timeout to 1.28 seconds as per the specification. See
ADV_DIRECT_LOW_DUTY_CYCLE for an alternative.

2 ADV_SCAN ς Invites scan requests for more advert data

3 ADV_NONCONN ς Does not accept connections and/or active scans

4
ADV_DIRECT_LOW_DUTY_CYCLE ς Invites connection from addressed device using
low duty cycle timing using nAdvInternal and nAdvTimeout specified

peerAddr$

byRef peerAddr$ AS STRING

It can be an empty string that is omitted if the advertisement type is not ADV_DIRECT_IND.
This is only required when nAdvType == 1.

When not empty, a valid address string is exactly seven octets long (such as
\00\11\22\33\44\55\66), where the first octet is the address type and the rest of the 6
octets is the usual MAC address in big endian format (so that most significant octet of the
address is at offset 1), whether public or random.

0 Public

1 Random Static

2 Random Private Resolvable

3 Random Private Non-resolvable

All other values are illegal.

nAdvInterval

byVal nAdvInterval AS INTEGER.

The interval between two advertisement events (in milliseconds).

An advertisement event consists of a total of three packets being transmitted in the three
advertising channels.

Interval range: Between 20 and 10240 milliseconds.

nAdvTimeout

byVal nAdvTimeout AS INTEGER.

The time after which the module stops advertising (in milliseconds).

Value range: Between 0 and 16383000 milliseconds (rounded up to the nearest one
seconds or 1000 milliseconds).

A value of 0 means disable the timeout, but note that if limited advert modes was specified
in BleAdvRptInit() then the timeout is capped to 180000 milliseconds as per the Bluetooth
Specification. When the advert type specified is ADV_DIRECT_IND, the timeout is
automatically set to 1280 milliseconds as per the Bluetooth Specification.

Warning: To save power, do not set this to (e.g.) 100 milliseconds.

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 56

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

nFilterPolicy

byVal nFilterPolicy AS INTEGER.

Specifies the filter policy for the whitelist consisting of all bonded masters as follows:

0 Disable whitelist

1 Filter scan request; allow connection request from any

2 Filter connection request; allow scan request from any

3 Filter scan request and connection request

If the filter policy is not 0, the whitelist is enabled and filled with all the addresses of all
the devices in the trusted device database.

Interactive
Command

No

//Example :: BleAdvertStart.sb

 DIM addr$: addr$= ""

 FUNCTION HndlrBlrAdvTimOut ()

 PRINT " \ nAdvert stopped via timeout"

 PRINT " \ nExiting..."

 ENDFUNC 0

 //The advertising interval is set to 25 milliseconds. The module will stop

 //advertising after 60000 ms (1 minute)

 IF BleAdvertStart (0,addr$,25,60000,0) ==0 THEN

 PRINT " \ nAdverts Started"

 PRINT " \ nIf you search for bluetooth devices on your devi ce, you should see

'Laird RM1xx'"

 ELSE

 PRINT " \ n\ nAdvertisement not successful"

 ENDIF

 ONEVENT EVBLE_ADV_TIMEOUT CALL HndlrBlrAdvTimOut

 WAITEVENT

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 57

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

BLEADVERTSTART is an extension function.

BleAdvertStop

FUNCTION

Note: The function is not available in the RM1xx module and always returns an error.

This function causes the BLE module to stop advertising.

BLEADVERTSTOP ()

Returns
INTEGER, a result code.

Most typical value ς 0x0000, indicating a successful operation.

Arguments None

Interactive
Command

No

//Example :: BleAdvertStop.sb (See in RM1xxCodeSnippets.zip)

 DIM addr$: addr$= ""

 DIM rc

 FUNCTION HndlrBlrAdvTimOut ()

 PRINT " \ nAdvert stopped via timeout"

 PRINT " \ nExiting..."

 ENDFUNC 0

 FUNCTION Btn0Press ()

 IF BleAdvertStop () ==0 THEN

 PRINT " \ nAdvertising Stopped"

 ELSE

Adverts Started

If you search for bluetooth devices on your device, you should see 'Laird

RM1xxô

Advert stopped via timeout

Exiting...

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 58

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 PRINT " \ n\ nAdvertising failed to stop"

 ENDIF

 PRINT " \ nExiting..."

 ENDFUNC 0

 IF BleAdvertStart (0,addr$,25,60000,0) ==0 THEN

 PRINT " \ nAdverts Started. Press button 0 to stop. \ n"

 ELSE

 PRINT " \ n\ nAdvertisement not successful"

 ENDIF

 rc = GpioSetFunc (16,1,2)

 rc = GpioBindEvent (0,16,1)

 ONEVENT EVBLE_ADV_TIMEOUT CALL HndlrBlrAdvTimOut

 ONEVENT EVGPIOCHAN0 CALL Btn0Press

 WAITEVENT

Expected Output:

BLEADVERTSTOP is an extension function.

BleAdvRptInit

FUNCTION

Note: The function is not available in the RM1xx module and always returns an error.

This function is used to create and initialize an advert report with a minimal set of ADs (advertising
records) and store it the string specified. It is not advertised until BLEADVRPTSCOMMIT is called.

This report is for use with advertisement packets.

Adverts Started. Press button 0 to stop.

Advertising Stopped

Exiting...

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 59

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BLEADVRPTINIT, nFlagsAD, nAdvAppearance, nMaxDevName), nAdvAppearance, nMaxDevName),
nAdvAppearance, nMaxDevName)

Returns
INTEGER, a result code. The most typical value is 0x0000, indicating a successful
operation.

Arguments

advRpt$ byRef advRpt$ AS STRING.
This contains an advertisement report.

nFlagsAD byVal nFlagsAD AS INTEGER.
Specifies the flags AD bits where bit 0 is set for limited discoverability and bit 1 is set for
general discoverability. Bit 2 is forced to 1 and bits 3 and 4 are forced to 0. Bits 3 to 7 are
reserved for future use by the BT SIG and must be set to 0.

Note: If a whitelist is enabled in the BleAdvertStart() function then both Limited and
General Discoverability flags MUST be 0 as per the BT 4.0 specification (Volume 3,
Sections 9.2.3.2 and 9.2.4.2)

nAdvAppearance byVal nAdvAppearance AS INTEGER.

Determines whether the appearance advert should be added or omitted as follows:

0 Omit appearance advert

1
Add appearance advert as specified in the GAP service which is supplied via
the BleGapSvcInit() function.

nMaxDevName byVal nMaxDevName AS INTEGER.
The n leftmost characters of the device name specified in the GAP service. If this value is
set to 0 then the device name is not included.

Interactive
Command

No

//Example :: BleAdvRptInit.sb (See in RM1xxCodeSnippets.zip)

 DIM advRpt$: advRpt$= ""

 DIM discovMode : discovMode=0

 DIM advAppearance : advAppearance = 1

 DIM maxDevName : maxDevName = 10

 IF BleAdvRptInit (advRpt$, discovMode, advAppearance, maxDevName) ==0 THEN

 PRINT " \ nAdvert report initialised"

 ENDIF

Expected Output:

BLEADVRPTINIT is an extension function.

Advert report initialised

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 60

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BleScanRptInit

FUNCTION

Note: The function is not available in the RM1xx module and will always return an error.

This function is used to create and initialize a scan report which will be sent in a SCAN_RSP message. It
will not be used until BLEADVRPTSCOMMIT is called.

This report is for use with SCAN_RESPONSE packets.

BLESCANRPTINITscanRpt)

Returns
INTEGER, a result code.

Most typical value ς 0x0000, indicating a successful operation.

Arguments

scanRpt byRef scanRpt ASSTRING.
This contains a scan report.

Interactive
Command

No

//Example :: BleScanRptInit.sb (See in RM1xxCodeSnippets.zip)

 DIM scnRpt$: scnRpt$= ""

 IF BleScanRptInit (scnRpt$) ==0 THEN

 PRINT " \ nScan report initialised"

 ENDIF

Expected Output:

BLESCANRPTINIT is an extension function.

BleAdvRptAddUuid16

FUNCTION

Note: The function is not available in the RM1xx module and always returns an error.

This function is used to add a 16-bit UUID service list AD (Advertising record) to the advert report. This
consists of all the 16-bit service UUIDs that the device supports as a server.

BLEADVRPTADDUUID16, nUuid1, nUuid2, nUuid3, nUuid4, nUuid5, nUuid6)

Returns
INTEGER, a result code.

Most typical value ς 0x0000, indicating a successful operation.

Scan report initialised

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 61

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Arguments

AdvRpt byRef AdvRpt AS STRING.
The advert report onto which the 16-bit UUIDs AD record is added.

Uuid1 byVal uuid1 AS INTEGER
UUID in the range 0 to FFFF, if value is outside that range it is ignored.

Set the value to -1 to have it ignored and then all further UUID arguments are also ignored.

Uuid2 byVal uuid2 AS INTEGER

UUID in the range 0 to FFFF, if value is outside that range it is ignored.

Set the value to -1 to have it ignored and then all further UUID arguments are also ignored.

Uuid3 byVal uuid3 AS INTEGER

UUID in the range 0 to FFFF, if value is outside that range it is ignored.

Set the value to -1 to have it ignored and then all further UUID arguments are also ignored.

Uuid4 byVal uuid4 AS INTEGER

UUID in the range 0 to FFFF, if value is outside that range it is ignored.

Set the value to -1 to have it ignored and then all further UUID arguments are also ignored.

Uuid5 byVal uuid5 AS INTEGER

UUID in the range 0 to FFFF, if value is outside that range it is ignored.

Set the value to -1 to have it ignored and then all further UUID arguments are also ignored.

Uuid6 byVal uuid6 AS INTEGER

UUID in the range 0 to FFFF, if value is outside that range it is ignored.

Set the value to -1 to have it ignored and then all further UUID arguments are also ignored.

Interactive
Command

No

//Example :: BleAdvAddUuid16.sb (See in RM1xxCodeSnippets.zip)

 DIM advRpt$, rc

 DIM discovMode : discovMode=0

 DIM advAppearance : advAppearance = 1

 DIM maxDevName : maxDevName = 10

 rc = BleAdvRptInit (advRpt$, discovMode, advAppearance, maxDevName)

 //BatteryService = 0x180F

 //DeviceInfoService = 0x180A

 IF BleAdvRptAddUuid16 (advRpt$,0x180F,0x180A, - 1, - 1, - 1, - 1) ==0 THEN

 PRINT " \ nUUID Service List AD added"

 ENDIF

 //Only the battery and device information services are included in the advert report

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 62

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

BLEADVRPTADDUUID16 is an extension function.

BleAdvRptAddUuid128

FUNCTION

Note: The function is not available in the RM1xx module and always returns an error.

This function is used to add a 128 bit UUID service list AD (Advertising record) to the advert report
specified. Given that an advert can have a maximum of only 31 bytes, it is not possible to have a full UUID
list unless there is only one to advertise.

BLEADVRPTADDUUID128nUuidHandle)

Returns
INTEGER, a result code.

Most typical value ς 0x0000, indicating a successful operation.

Arguments

advRpt byRef AdvRpt AS STRING.

The advert report into which the 128-bit UUID AD record is to be added.

nUuidHandle byVal nUuidHandle AS INTEGER
This is handle to a 128-bit UUID which was obtained using say the function
BleHandleUuid128() or some other function which returns one, like BleHandleUuid128 ()

Interactive
Command

No

DiM tx$,scRpt$,adRpt$,addr$

Dim uuid$

Dim hUuidCustom

scRpt$= ""

PRINT BleScanRptInit (scRpt$)

uuid$ = "ced9d91366924a1287d56f2764762b2a"

uuid$ = StrDehexize$ (uuid$)

hUuidCustom = BleHandleUuid128 (uuid$)

//Advertise the service in a scan report

PRINT BleAdvRptAddUuid128 (scRpt$,hUuidCustom)

adRpt$= ""

PRINT BleAdvRptsCommit (adRpt$,scRpt$)

addr$= ""//because we are not doing a DIRECT advert

PRINT BleAdvertStart (0,addr$,20,30000,0)

WAITEVENT

UUID Service List AD added

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 63

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

BLEADVRPTADDUUID128 is an extension function.

BleAdvRptAppendAD

FUNCTION

Note: The function is not available in the RM1xx module always returns an error.

This function adds an arbitrary AD (Advertising record) field to the advert report. An AD element consists
of a LEN:TAG:DATA construct where TAG can be any value from 0 to 255 and DATA is a sequence of octets.

BLEADVRPTAPPENDAD, nTag, stData$)

Returns
INTEGER, a result code.

Most typical value ς 0x0000, indicating a successful operation.

Arguments

AdvRpt byRef AdvRpt AS STRING.
The advert report onto which the AD record is to be appended.

nTag byVal nTag AS INTEGER
nTag should be in the range 0 to FF and is the TAG field for the record.

stData$ byRef stData$ AS STRING
This is an octet string which can be 0 bytes long. The maximum length is governed by the
space available in AdvRpt, a maximum of 31 bytes long.

Interactive
Command

No

//Example :: BleAdvRptAppendAD.sb (See in RM1xxCodeSnippets.zip)

 DIM scnRpt$,ad$

 ad$= " \ 01\ 02\ 03\ 04"

 PRINT BleScanRptInit (scnRpt$)

 IF BleAdvRptAppendAD (scnRpt$,0x31,ad$) ==0 THEN //6 bytes will be used up in the report

 PRINT " \ nAD with data '" ;ad$; "' was appended to the advert report"

 ENDIF

00000

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 64

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

BLEADVRPTAPPENDAD is an extension function

BleAdvRptsCommit

FUNCTION

Note: The function is not available in the RM1xx module and will always return an error.

This function is used to commit one or both advert reports. If the string is empty, then that report type is
not updated. Both strings can be empty and in that case this call has no effect.

The advertisements do not occur until they are started using BleAdvertStart() function.

BLEADVRPTSCOMMIT, scanRpt)

Returns
INTEGER, a result code.

Most typical value ς 0x0000, indicating a successful operation.

Arguments

advRpt byRef advRpt AS STRING.
The most recent advert report.

scanRpt byRef scanRpt AS STRING.
The most recent scan report.

Note: If any one of the two strings is not valid then the call will be aborted without updating
the other report even if this other report is valid.

Interactive
Command

No

//Example :: BleAdvRptsCommit.sb (See in RM1xxCodeSnippets.zip)

 DIM advRpt$: advRpt$= ""

 DIM scRpt$: scRpt$= ""

 DIM discovMode : discovMode = 0

 DIM advApprnce : advApprnce = 1

 DIM maxDevName : maxDevName = 10

 PRINT BleAdvRptInit (advRpt$, discovMode, advApprnce, maxDevName)

 PRINT BleAdvRptAddUuid16 (advRpt$, 0x180F,0x180A, - 1, - 1, - 1, - 1)

 PRINT BleAdvRptsCommit (advRpt$, scRpt$)

 // Only the advert report will be updated.

0

AD with data ' \ 01\ 02\ 03\ 04' was appended to the advert report

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 65

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

BLEADVRPTSCOMMIT is an extension function.

Scanning Functions

When a peripheral advertises, the advert packet consists type of advert, address, RSSI, and some user
data information.

A central role device enters scanning mode to receive these advert packets from any device that is
advertising.

For each advert that is received the data is cached in a ring buffer, if space exists and the
EVBLE_ADV_REPORT event is thrown to the smartBASIC application so that it can invoke the function
BleScanGetAdvReport() to read it.

The scan procedure ends when it times out (timeout parameter is supplied when scanning is initiated) or
is explicitly instructed to abort or stop.

Note: While scanning for a long period of time, it is possible that a peripheral device is advertising
for a connection to it using the ADV_DIRECT_IND advert type. When this happens, it is good
practice for the central device to stop scanning and initiate the connection. To cater for this
specific scenario, which would normally require the central device to look out for that advert
type and the self-address, the EVBLE_FAST_PAGED event is thrown to the application. The
user app must install a handler for that event which stops the scan procedure and
immediately start a connection procedure.

CƻǊ ƳƻǊŜ ƛƴŦƻǊƳŀǘƛƻƴ ŀōƻǳǘ ŀŘǾŜǊǘǎ ǎŜŜ ǘƘŜ ǎŜŎǘƛƻƴ άAdvertising Functionsέ

BleScanStart

FUNCTION

This function is used to start a scan for adverts which may result in at least one of these events being
thrown:

EVBLE_SCAN_TIMEOUT End of scanning

EVBLE_ADV_REPORT Advert report received

EVBLE_FAST_PAGED Peripheral inviting connection to this module

The event EVBLE_ADV_REPORT is received when an advert has been successfully cached in a ring buffer.
The handler should call the function BleScanGetAdvReport() repeatedly to read all the advert reports that
have been cached until the cache is empty, otherwise there is a risk that advert reports will be discarded.
The output parameter nDiscarded returns the number of discarded reports, if any.

000

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 66

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

The event EVBLE_FAST_PAGED is received when a peripheral has sent an advert with the address of this
module. The handler should stop scanning using BleScanStop() and then initiate a connection using
BleConnect().

There are three parameters used when initiating a scan that are configurable using BleScanConfig(),
otherwise default values are used:

Scan Interval
Specify the duty cycle for listening for adverts.

Default values:

Scan Interval ς 80 milliseconds

Scan Window ς 40 milliseconds
Scan Window

Scan Type Default: Active

Active scanning means that for each advert received, if it is of type ADV_IND or ADV_DISCOVER_IND then
a SCAN_REQ is sent to the advertising device so that the data in the scan response can be appended to
the data that has already been received for the advert.

These values for these default parameters can be changed prior to invoking this function by calling the
function BleScanConfig() appropriately.

There can be situations where there are many peripherals advertising and it may desirable to save power
by not having to process all the adverts that are received. For this situation, this function takes a filter
parameter which enables an opaque object to be presented to the baseband which contains a whitelist
of MAC addresses. This means that only addresses that match those in the object get transferred to upper
layers for further processing. This opaque object consisting of whitelisted mac addresses is created and
modified using the functions BleWhiteListCreate(), BleWhiteListAddAddr(), and BleWhiteListAddIrk().

Note: IRK stands for Identity Resolving Key.

Finally, be aware that scanning is a memory-intensive operation and so heap memory is used to manage
a cache. If the heap is fragmented, it is likely this function will fail with an appropriate resultcode returned.
When that happens, you can call reset() and then attempt the scan start again. The memory that is
allocated to manage this scan process is NOT released when the scanning times out. To force release of
that memory, it is recommend starting the scan and then immediately calling BleScanStop().

BLESCANSTART, nFilterHandle))

Returns
INTEGER, a result code.

Most typical value ς 0x0000, indicating a successful operation.

Arguments

scanTimeoutMs byVAL scanTimeoutMs AS INTEGER.
The length milliseconds the scan for adverts lasts.

If it times out, then the event EVBLE_SCAN_TIMEOUT is thrown to the smartBASIC
application.
Valid range ς 0 to 65535000 milliseconds (about 18 hours).

If 0 is supplied, it will not start a timer and scanning can only be stopped by calling either
BleScanAbort() or Ble ScanStop().

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 67

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

nFilterHandle byVAL nFilterHandle AS INTEGER
This must be 0 to specify no filtering of adverts, otherwise it will be a value returned by
BleWhiteListCreate() and subsequently updated by BleWhiteListAddAddr() and/or
BleWhiteListAddIrk().
When non-zero, only devices with matching address (or resolvable address corresponding
to the IRK) result in a EVBLE_ADV_REPORT event to the smartBASIC application.

Interactive
Command

No

//Example :: BleScanStart.sb (See in RM1xxCodeSnippets.zip)

 DIM rc

 '//Scan for 20 seconds with no filtering

 rc = BleScanStart (20000, 0)

 IF rc==0 THEN

 PRINT " \ nScanning"

 ELSE

 PRINT " \ nError: " ; INTEGER.H'rc

 ENDIF

 '//This handler will be called when scanning times out

 FUNCTION HndlrScanTO ()

 PRINT " \ nScan timeout"

 ENDFUNC 0

 ONEVENT EVBLE_SCAN_TIMEOUT CALL HndlrScanTO

 WAITEVENT

 Expected Output:

BLESCANSTART is an extension function.

Scanning

Scan timeout

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 68

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BleScanAbort

FUNCTION

This function is used to cancel an ongoing scan for adverts which has not timed out. It takes no parameters
since there can only be one scan in progress.

Use the value returned by SYSINFO(2016) to determine if there is an ongoing scan operation in progress.
The value is a bit mask:

Bit 0 Set if advertising is in progress (not possible with the RM1xx)

Bit 1 Set if there is already a connection in the peripheral role (not possible with the RM1xx)

Bit 2 Set if there is a current connection attempt ongoing

Bit 3 Set when scanning

Bit 4 Set if there is already a connection to a peripheral

Note: There is also BleScanStop() which also cancels an ongoing scan. The difference is that, by
calling BleScanAbort(), the memory that was allocated from the heap by BleScanStart() is not
released back to the heap. The scan manager retains it for the next scan operation.

BLESCANABORT()

Returns
INTEGER, a result code.

Most typical value ς 0x0000, indicating a successful operation.

Arguments None

Interactive
Command

No

//Example :: BleScanAbort.sb (See in RM1xxCodeSnippets.zip)

 DIM rc, startTick

 '//Scan for 20 seconds with no filtering

 rc = BleScanStart (20000, 0)

 IF rc==0 THEN

 PRINT " \ nScanning"

 ELSE

 PRINT " \ nError: " ; INTEGER.H'rc

 ENDIF

 '//Wait 2 seconds before aborting scan

 startTick = GetTickCount ()

 WHILE GetTickSince (startTick) < 2000

 ENDWHILE

 '//If scan in progress, abort

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 69

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 IF SysInfo (2016) == 0x08 THEN

 PRINT " \ nAborting scan"

 rc = BleScanAbort ()

 IF SysInfo (2016) == 0 THEN

 PRINT " \ nScan aborted"

 ENDIF

 ENDIF

 Expected Output:

BLESCANABORT is an extension function.

BleScanStop

FUNCTION

This function is used to cancel an ongoing scan for adverts which has not timed out. It takes no parameters
since there can only be one scan in progress.

Use the value returned by SYSINFO(2016) to determine if there is an ongoing scan operation in progress.
The value is a bit mask:

Bit 0 Set if advertising is in progress (not possible with the RM1xx)

Bit 1 Set if there is already a connection in the peripheral role (not possible with the RM1xx)

Bit 2 Set if there is a current connection attempt ongoing

Bit 3 Set when scanning

Bit 4 Set if there is already a connection to a peripheral

Note: There is also BleScanAbort() which also cancels an ongoing scan. The difference is that, by
calling BleScanStop(), the memory that was allocated from the heap by BleScanStart() is
released back to the heap. The scan manager must reallocate the memory if BleScanStart() is
called again.

BLESCANSTOP()

Returns
INTEGER, a result code.

Most typical value ς 0x0000, indicating a successful operation.

Arguments None

Interactive
Command

No

//Example :: BleScanStop.sb (See in RM1xxCodeSnippets.zip)

Scanning

Aborting scan

Scan aborted

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 70

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 DIM rc, startTick

 '//Scan for 20 seconds with no filtering

 rc = BleScanStart (20000, 0)

 IF rc==0 THEN

 PRINT " \ nScanning"

 ELSE

 PRINT " \ nError: " ; INTEGER.H'rc

 ENDIF

 '//Wait 2 seconds before aborting scan

 startTick = GetTickCount ()

 WHILE GetTickSince (startTick) < 2000

 ENDWHILE

 '//If scan in progress, abort

 IF SysInfo (2016) == 0x08 THEN

 PRINT " \ nStop scanning. Freeing up allocated memory"

 rc = BleScanStop ()

 IF SysInfo (2016) == 0 THEN

 PRINT " \ nScan stopped"

 ENDIF

 ENDIF

Expected Output:

BLESCANSTOP is an extension function.

BleScanFlush

FUNCTION

This function is used to flush the buffer that contains advert reports that are currently in the internal cache
waiting to be read by the function BleScanGetAdvReport().

When scanning is initiated using BleScanStart() the internal cache is automatically flushed so no need to
call this function prior to starting a scan.

Scanning

Stop scanning. Freeing up allocated memory

Scan stopped

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 71

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BLESCANFLUSH()

Returns
INTEGER, a result code.

Most typical value ς 0x0000, indicating a successful operation.

Arguments None

Interactive
Command

No

DIM rc

 '//Flush the advert report cache

 rc = BleScanFlush ()

BLESCANFLUSH is an extension function.

BleScanConfig

FUNCTION

This function is used to modify the default parameters that are used when initiating a scan operation using
BleScanStart().

The following lists the default parameters and their settings:

Scan Interval 80 milliseconds

Scan Window 40 milliseconds

Scan Type (Active/Passive) Active

Minimum Reports in the Cache 4

Note: The default Scan Window and Interval give a 50% duty cycle. The 50% duty cycle attempts to
ensure that connection events for existing connections are missed as infrequently as possible.

BLESCANCONFIG)))

Returns
INTEGER, a result code.
Most typical value ς 0x0000, indicating a successful operation.

Arguments

configID byVal configID AS INTEGER
This identifies the value to update as follows:
0 Scan Interval in milliseconds (range 0..10240)

1 Scan Window in milliseconds (range 0..10240)

2 Scan Type (0=Passive, 1=Active)

3 Advert Report Cache Size
For all other configID values, the function returns an error.

configValue byVal configValue AS INTEGER
This contains the new value to set in the parameters identified by configID.

Interactive
Command

No

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 72

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

//Example :: BleScanConfig.sb (See in RM1xxCodeSnippets.zip)

 DIM rc, startTick

 PRINT " \ nScan Interval: " ; SysInfo (2150) //get current scan interval

 PRINT " \ nScan Window: " ; SysInfo (2151) //get current scan window

 PRINT " \ nScan Type: " ;

 IF SysInfo (2152) ==0 THEN //get current scan type

 PRINT "Passive"

 ELSE

 PRINT "Active"

 ENDIF

 PRINT " \ nReport Cache Size: " ; SysInfo (2153) //get report cache size

 PRINT " \ n\ nSetting new parameters..."

 rc = BleScanConfig (0, 100) //set scan interval to 100

 rc = BleScanConfig (1, 50) //set scan window to 50

 rc = BleScanConfig (2, 0) //set scan type to passive

 rc = BleScanConfig (3, 3) //set report cache size

 PRINT " \ n\ n--- New Parameters:"

 PRINT " \ nScan Interval: " ; SysInfo (2150) //get current scan interval

 PRINT " \ nScan Window: " ; SysInfo (2151) //get current scan window

 PRINT " \ nScan Type: " ;

 IF SysInfo (2152) ==0 THEN //get current scan type

 PRINT "Passive"

 ELSE

 PRINT "Active"

 ENDIF

 PRINT " \ nReport Cache Size: " ; SysInfo (2153) //get report cache size

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 73

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

BLESCANCONFIG is an extension function.

BleScanGetAdvReport

FUNCTION

When a scan is in progress after having called BleScanStart() for each advert report the information is
cached in a queue buffer and a EVBLE_ADV_REPORT event is thrown to the smartBASIC application.

This function is used by the smartBASIC application to extract it from the queue for further processing in
the handler for the EVBLE_ADV_REPORT event.

The information that is retrieved consists of the address of the peripheral that sent the advert, the data
payload, the number of adverts (all, not just from that peripheral) that have been discarded since the last
time this function was called and the RSSI value for that packet. The RSSI can be used to determine the
closest device, but please be aware that due to fading and reflections it is possible that a device further
away could result in a higher RSSI value.

BLESCANGETADVREPORT$, advData$, nDiscarded, nRssi))

Returns
INTEGER, a result code.

Most typical value ς 0x0000, indicating a successful operation.

Arguments

periphAddr$ byREF periphAddr$ AS STRING
On return this parameter is updated with the address of the peripheral that sent the advert.

advData$ byREF advData $ AS STRING
On return this parameter is updated with the data payload of the advert which consists of
multiple AD elements.

Scan Interval: 80

Scan Window: 40

Scan Type: Active

Report Cache Size: 4

Setting new parameters..

--- New Parameters:

Scan Interval: 100

Scan Window: 50

Scan Type: Passive

Report Cache Size: 3

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 74

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

nDiscarded byREF nDiscarded AS INTEGER
On return this parameter is updated with the number of adverts that were discarded because
there was no space in the internal queue.

nRssi byREF nRssi AS INTEGER
On return this parameter is updated with the RSSI as reported by the stack for that advert.

Note: This is NOT a value that is sent by the peripheral but a value that is calculated by the
receiver in this module.

Interactive
Command

No

Note: This code snippet was tested with another RM1xx running the iBeacon app (see in
smartBASIC_Sample_Apps folder) on Peripheral firmware.

//Example :: BleScanGetAdvReport.sb (See in RM1xxCodeSnippets.zip)

 DIM rc

 '//Scan for 5 seconds with no filtering

 rc = BleScanStart (5000, 0)

 IF rc==0 THEN

 PRINT " \ nScanning"

 ELSE

 PRINT " \ nError: " ; INTEGER.H'rc

 ENDIF

 '//This handler will be called when scanning times out

 FUNCTION HndlrScanTO ()

 PRINT " \ nScan timeout"

 ENDFUNC 0

 '//This handler will be called when an advert is received

 FUNCTION HndlrAdvRpt ()

 DIM periphAddr$, advData$, nDiscarded, nRssi

 '//Read all cached advert reports

 DO

 rc= BleScanGetAdvReport (periphAddr$, advData$, nDiscarded, nRssi)

 PRINT " \ n\ nPeer Address: " ; StrHexize$ (periphAddr$)

 PRINT " \ nAdvert Data: " ;StrHexize$ (advData$)

 PRINT " \ nNo. Discarded Adverts: " ;nDiscarded

 PRINT " \ nRSSI: " ;nRssi

 UNTIL rc!=0

 PRINT " \ n\ n --- No more adverts in cache"

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 75

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 ENDFUNC 1

 ONEVENT EVBLE_SCAN_TIMEOUT CALL HndlrScanTO

 ONEVENT EVBLE_ADV_REPORT CALL HndlrAdvRpt

 WAITEVENT

Expected Output:

BLESCANGETADVREPORT is an extension function.

BleGetADbyIndex

FUNCTION

This function is used to extract a copy of the nth (zero based) advertising data (AD) element from a string
which is assumed to contain the data portion of an advert report, incoming or outgoing.

Note: If the last AD element is malformed then it is treated as not existing. For example, it is
malformed if the length byte for that AD element suggests that more data bytes are required
than actually exist in the report string.

Scanning

Peer Address: 01D8CFCF14498D

Advert Data: 0201061AFF4C000215E2C56DB5DFFB48D2B060D0F5A71096E012345678C4

No. Discarded Adverts: 0

RSSI: - 97

Peer Address: 01D8CFCF14498D

Advert Data: 0201061AFF4C000215E2C56DB5DFFB48D2B060D0F5A71096E012345678C4

No. Discarded Adverts: 0

RSSI: - 97

 --- No more adverts in cache

Peer Address: 01D8CFCF14498D

Advert Data: 0201061AFF4C000215E2C56DB5DFFB48D2B060D0F5A71096E012345678C4

No. Discarded Adverts: 0

RSSI: - 92

Peer Address: 01D8CFCF14498D

Advert Data: 0201061AFF4C000215E2C56DB5DFFB48D2B060D0F5A71096E012345678C4

No. Discarded Adverts: 0

RSSI: - 92

 --- No more adverts in cache

Scan timeout

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 76

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BLEGETADBYINDEX, rptData$, nADtag, ADval$)

Returns
INTEGER, a result code.

Most typical value ς 0x0000, indicating a successful operation.

Arguments

nIndex byVAL nIndex AS INTEGER
This is a zero based index of the AD element that is copied into the output data parameter
ADval$.

rptData$ byREF rptData$ AS STRING.
This parameter is a string that contains concatenated AD elements which are either
constructed for an outgoing advert or received in a scan (depends on module variant)

nADTag byREF nADTag AS INTEGER
When the nth index is found, the single byte tag value for that AD element is returned in this
parameter

ADval$ byREF ADval$ AS STRING
When the nth index is found, the data excluding single byte the tag value for that AD element
is returned in this parameter.

Interactive
Command

No

//Example :: BleAdvGetADbyIndex.sb (See in RM1xxCodeSnippets.zip)

 DIM rc, ad1$, ad2$, fullAD$, nADTag, ADval$

 '//AD with length = 6 bytes, tag = 0xDD

 ad1$= " \ 06\ DD\ 11\ 22\ 33\ 44\ 55"

 '//AD with length = 7 bytes, tag = 0xDA

 ad2$= " \ 07\ EE\ AA\ BB\ CC\ DD\ EE\ FF"

 fullAD$ = ad1$ + ad2$

 PRINT " \ n\ n" ; Strhexize$ (fullAD$) ; " \ n"

 rc= BleGetADbyIndex (0, fullAD$, nADTag, ADval$)

 IF rc==0 THEN

 PRINT " \ nFirst AD element with tag 0x" ; INTEGER.H'nADTag ;" is

";StrHexize$(ADval$)

 ELSE

 PRINT " \ nError reading AD: " ;INTEGER.H 'rc

 ENDIF

 rc= BleGetADbyIndex (1, fullAD$, nADTag, ADval$)

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 77

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 IF rc==0 THEN

 PRINT " \ nSecond AD element with tag 0x" ; INTEGER.H'nADTag ;" is

";StrHexize$(ADval$)

 ELSE

 PRINT " \ nError reading AD: " ; INTEGER.H'rc

 ENDIF

 '//Will fail because there are only 2 AD elements

 rc= BleGetADbyIndex (2, fullAD$, nADTag, ADval$)

 IF rc==0 THEN

 PRINT " \ nThird AD element with tag 0x" ; INTEGER.H'nADTag ;" is

";StrHexize$(ADval$)

 ELSE

 PRINT " \ nError reading AD: " ; INTEGER.H'rc

 ENDIF

Expected Output:

BLEGETADBYINDEX is an extension function.

BleGetADbyTag

FUNCTION

This function is used to extract a copy of the first advertising data (AD) element that has the tag byte
specified from a string which is assumed to contain the data portion of an advert report, incoming or
outgoing. If multiple instances of that AD tag type are suspected, then use the function BleGetADbyIndex
to extract.

Note: If the last AD element is malformed then it is treated as not existing. For example, it is
malformed if the length byte for that AD element suggests that more data bytes are required
than actually exist in the report string.

BLEGETADBYTAG$, nADtag, ADval$)

Returns
INTEGER, a result code.

Most typical value ς 0x0000, indicating a successful operation.

06DD112233445507EEAABBCCDDEEFF

First AD element with tag 0x000000DD is 1122334455

Second AD element with tag 0x000000EE is AABBCCDDEEFF

Error reading AD: 00006060

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 78

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Arguments

rptData$ byREF rptData$ AS STRING.
This parameter is a string that contains concatenated AD elements which are either
constructed for an outgoing advert or received in a scan (depends on module variant)

nADTag byVAL nADTag AS INTEGER
This parameter specifies the single byte tag value for the AD element that is to returned in the
ADval$ parameter. Only the first instance can be catered for. If multiple instances are
suspected, then use BleAdvADbyIndex() to extract it.

ADval$ byREF ADval$ AS STRING
When the nth index is found, the data excluding single byte the tag value for that AT element
is returned in this parameter.

Interactive
Command

No

 //Example :: BleAdvGetADbyIndex.sb (See in RM1xxCodeSnippets.zip)

 DIM rc, ad1$, ad2$, fullAD$, nADTag, ADval$

 '//AD with length = 6 bytes, tag = 0xDD

 ad1$= " \ 06\ DD\ 11\ 22\ 33\ 44\ 55"

 '//AD with length = 7 bytes, tag = 0xDA

 ad2$= " \ 07\ EE\ AA\ BB\ CC\ DD\ EE\ FF"

 fullAD$ = ad1$ + ad2$

 PRINT " \ n\ n" ; Strhexize$ (fullAD$) ; " \ n"

 nADTag = 0xDD

 rc= BleGetADbyTag (fullAD$, nADTag, ADval$)

 IF rc==0 THEN

 PRINT " \ nAD element with tag 0x" ; INTEGER.H'nADTag ;" is ";StrHexize$(ADval$)

 ELSE

 PRINT " \ nError reading AD: " ;INTEGER.H 'rc

 ENDIF

 nADTag = 0xEE

 rc= BleGetADbyTag (fullAD$, nADTag, ADval$)

 IF rc==0 THEN

 PRINT " \ nAD element with tag 0x" ; INTEGER.H'nADTag ;" is ";StrHexize$(ADval$)

 ELSE

 PRINT " \ nError reading AD: " ; INTEGER.H'rc

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 79

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 ENDIF

 nADTAG = 0xFF

 '//Will fail because no AD exists in 'fullAD$' with the tag 'FF'

 rc= BleGetADbyTag (fullAD$, nADTag, ADval$)

 IF rc==0 THEN

 PRINT " \ nAD element with tag 0x" ; INTEGER.H'nADTag ;" is ";StrHexize$(ADval$)

 ELSE

 PRINT " \ nError reading AD: " ; INTEGER.H'rc

 ENDIF

Expected Output:

BLEGETADBYTAG is an extension function.

BleScanGetPagerAddr

FUNCTION

When a scan is in progress after calling BleScanStart(), an EVBLE_FAST_PAGED event is thrown whenever
an ADV_DIRECT_IND advert is received with the address of this module, requesting a connection to it.

This function returns the address of the peripheral requesting a connection and the RSSI. It should be used
ƛƴ ǘƘŜ ƘŀƴŘƭŜǊ ƻŦ ǘƘŜ 9±.[9ψC!{¢ψt!D95 ŜǾŜƴǘ ǘƻ ƎŜǘ ǘƘŜ ǇŜǊƛǇƘŜǊŀƭΩǎ ŀŘŘǊŜǎǎΦ {ŎŀƴƴƛƴƎ ǎƘƻǳƭŘ ǘƘŜƴ ōŜ
stopped using either BleScanAbort() or BleScanStop(). You can then use the address supplied by this
function to connect to the peripheral using BleConnect() if that is the desired use case. The Bluetooth
specification does NOT mandate a connection.

BLESCANGETPAGERADDR$, nRssi))

Returns
INTEGER, a result code.

Most typical value ς 0x0000, indicating a successful operation.

Arguments

periphAddr$ byREF periphAddr$ AS STRING
On return this parameter is updated with the address of the peripheral that sent the advert.

nRssi byREF nRssi AS INTEGER
On return this parameter is updated with the RSSI as reported by the stack for that advert.

06DD112233445507EEAABBCCDDEEFF

AD element with tag 0x000000DD is 1122334455

AD element with tag 0x000000EE is AABBCCDDEEFF

Error reading AD: 00006060

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 80

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Note: This is NOT a value that is sent by the peripheral but a value that is calculated by the
receiver in this module.

Interactive
Command

No

 //Example :: BleScanGetPagerAddr.sb (See in RM1xxCodeSnippets.zip)

 DIM rc

 '//Scan for 20 seconds with no filtering

 rc = BleScanStart (10000, 0)

 IF rc==0 THEN

 PRINT " \ nScanning"

 ELSE

 PRINT " \ nError: " ; INTEGER.H'rc

 ENDIF

 '//This handler will be called when scanning times out

 FUNCTION HndlrScanTO ()

 PRINT " \ nScan timeout"

 ENDFUNC 0

 '// Handler is called when advert is received requesting connection to this module

FUNCTION HndlrFastPaged ()

 DIM periphAddr$, nRssi

 rc = BleScanGetPagerAddr (periphAddr$, nRssi)

 PRINT " \ nAdvert received from peripheral " ; StrHexize$ (periphAddr$) ; " with RSSI

" ;nRssi

 PRINT " \ nrequesting a connection to this module"

 rc = BleScanStop ()

 ENDFUNC 0

 ONEVENT EVBLE_SCAN_TIMEOUT CALL HndlrScanTO

 ONEVENT EVBLE_FAST_PAGED CALL HndlrFastPaged

 WAITEVENT

Expected Output:

BLESCANGETPAGERADDR is an extension function.

Scanning

Advert received from peripheral 01D8CFCF14498D with RSSI - 96

requesting a connection to this module

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 81

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Whitelist Management Functions

IMPORTANT! The functions in this section are still in alpha state and should not be used.

The BLE paradigm is to consume as little power as possible so that operation from whatever power source
lasts as long as possible.

One way to minimize power consumption is to ensure that incoming radio packets are filtered at the
baseband level so that only a subset of addresses result in upper layers being informed about those radio
packets.

This subset list of addresses is referred to as a whitelist in the Bluetooth specification. When a device
powers up, the whitelist is empty. It is up to the upper layers to populate that list.

This section deals with all smartBASIC functions that enable that whitelist to be created in an opaque
object for other operations such as BleScanStart() to use and activate. The functions allow creation,
addition of addresses and identity resolving keys (IRKs), and destruction of the whitelist.

An identity resolving key (IRK) is a 128-bit value that is used as a key in an AES encryption EBC algorithm
along with a three-byte random number to create another three-byte value such that when they are
concatenated a resolvable MAC address is created as per the Bluetooth specification. The upper two bits
of this six-byte MAC address is adjusted to signify that it is a resolvable random MAC address.

The receiving device examines the upper two bits and if it signifies a resolvable address, then it takes the
relevant three bytes from that address and uses an IRK that it acquired from a device through a bonding
process to determine whether it is a known address. For whitelisting purposes, all of this is done by the
lower layers in the baseband.

BleWhiteListCreate

FUNCTION

This function is used to create a whitelist which is empty but contains enough memory to hold a maximum
number of MAC addresses and a maximum number of Identity Resolving Keys (IRKs).

It returns a handle to the opaque object which is then subsequently used with the other whitelisted API
functions.

Note: Do NOT destroy this object using BleWhiteListDestroy() while the object is in use by the
underlying stack. This results in unpredictable behaviour.

BLEWHITELISTCREATE, maxIRKs))

Returns

INTEGER
This is a handle that identifies the opaque object that was created.

It is 0 if there was no free memory in the heap to create it. Always check for this.

Arguments

maxMacAddr byVAL maxMacAddr AS INTEGER.
The is the maximum number of addresses that are stored in the created whitelist opaque
object. Each MAC address is a seven-byte entity: six for the address and the seventh for the
type.

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 82

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

To add a key to this list, use the BleWhiteListAddAddr() function.

maxIRKs byVAL maxIRKS AS INTEGER.
The is the maximum number of identity resolving keys that are stored in the created whitelist
opaque object. Each key is 16 bytes in length. To add a key to this list, use the function
BleWhiteListAddIrk().

Interactive
Command

No

 //Example :: BleWhiteListCreate.sb (See in RM1xxCodeSnippets.zip)

 DIM hWhiteList : hWhiteList = BleWhiteListCreate (20,10)

 IF hWhiteList == 0 THEN

 PRINT " \ nWhitelist not created, not enough memory"

 ELSE

 PRINT " \ nWhitelist created. Handle: " ; rc

 ENDIF

Expected Output:

BLEWHITELISTCREATE is an extension function.

BleWhiteListAddAddr

FUNCTION

This function is used to add a mac address to a whitelist that was created using BleWhiteListCreate() and
returns a resultcode.

Do not attempt to add a resolvable random address. Instead use BleWhiteListAddIrk() and add the identity
resolving key for that instead.

BLEWHITELISTADDADDR$)

Returns
INTEGER, a result code.

Most typical value ς 0x0000, indicating a successful operation.

Arguments

handle byVAL handle AS INTEGER
This is a handle to the whitelist object that needs to be added to and is returned by
BleWhiteListCreate().

macAddr$ byREF macAddr$ AS STRING
This is the mac address (seven bytes in length) to be added to the whitelist identified by the
handle above.

Interactive
Command

No

Whitelist created. Handle: - 1091583777

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 83

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //Example :: BleWhiteListAddAddr.sb (See in RM1xxCodeSnippets.zip)

 DIM rc

 DIM hWhiteList : hWhiteList = BleWhiteListCreate (20,10)

 DIM macAddr$: macAddr$ = " \ 01\ D8\ CF\ CF\ 14\ 49\ 8D"

 IF hWhiteList == 0 THEN

 PRINT " \ nWhitelist not created, not enough memory"

 ELSE

 PRINT " \ nWhitelist created. Handle: " ;hWhiteList

 ENDIF

 rc = BleWhiteListAddAddr (hWhiteList, macAddr$)

 IF rc==0 THEN

 PRINT " \ nMAC Address " ; StrHexize$ (macAddr$) ; " was added to the whitelist"

 ELSE

 PRINT " \ nError: " ; INTEGER.H'rc

 ENDIF

Expected Output:

BLEWHITELISTADDADDR is an extension function.

BleWhiteListDestroy

SUBROUTINE

This function is used to destroy a whitelist object that was created using BleWhiteListCreate().

Note: Do NOT destroy a whitelist object while the object is in use by the underlying stack. This
results in unpredictable behaviour.

BLEWHITELISTDESTROY ()

Returns None

Arguments

handle byVAL handle AS INTEGER
This is a handle to the whitelist object that needs to be destroyed and is returned by
BleWhiteListCreate().

Interactive
Command

No

Whitelist created. Handle: - 1091583780

MAC Address 01D8CFCF14498D was added to the whitelist

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 84

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //Example :: BleWhiteListDestroy.sb (See in RM1xxCodeSnippets.zip)

 DIM hWhiteList : hWhiteList = BleWhiteListCreate (20,10)

 IF hWhiteList!=0 THEN

 BleWhiteListDestroy (hWhiteList)

 PRINT " \ nWhitelist with handle: " ;hWhiteList; " destroyed"

 ENDIF

Expected Output:

Connection Functions

This section describes all the connection manager related routines.

The Bluetooth specification stipulates that a peripheral cannot initiate a connection but can perform
disconnections. Only Central Role devices are allowed to connect when an appropriate advertising packet
is received from a peripheral.

Events and Messages

See also Events and Messages for BLE-related messages that are thrown to the application when there is
a connection or disconnection. The relevant message IDs are (0), (1), (14), (15), (16), (17), (18) and (20):

MsgId Description

0 There is a connection and the context parameter contains the connection handle.

1 There is a disconnection and the context parameter contains the connection handle.

14 New connection parameters for connection associated with connection handle.

15 Request for new connection parameters failed for connection handle supplied.

16 The connection is to a bonded master

17 The bonding has been updated with a new long term key

18 The connection is encrypted

20 The connection is no longer encrypted

BleConnect

FUNCTION

This function is used to make a connection to a device in peripheral mode which is actively advertising.
Note that the peripheral device MUST be advertising with either ADV_IND or ADV_DIRECT_IND type of
advert to be able to successfully connect.

When the connection is complete a EVBLEMSG message with msgId = 0 and context containing the handle
is thrown to the smartBASIC runtime engine.

Whitelist with handle: - 1091583777 destroyed

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 85

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

If the connection times out, then the event EVBLE_CONN_TIMEOUT application.

When a connection is attempted, there are other parameters that are used and the default values for
those are assumed; such as scan window, scan interval, and periodicity. The default values for these can
be changed using the BleConnectConfig() function. At any time, the current settings can be obtained via
the SYSINFO() command.

BLECONNECT$, connTimeoutMs, minConnIntUs,maxConnIntUs, nSuprToutUs))

Returns
INTEGER, a result code.

Most typical value ς 0x0000, indicating a successful operation.

Arguments

periphAddr$ byRef periphAddr$ AS STRING

This is the MAC address of the device to connect to which MUST be properly formatted and
is exactly seven bytes long.

connTimeoutMs byVal connTimeoutMs AS INTEGER.
The length of time in milliseconds of the connection attempt. If it times out, then the event
EVBLE_CONN_TIMEOUT is thrown to the smartBASIC application.

minConnIntUs byVal minConnIntUs AS INTEGER.
The minimum connection interval in microseconds.

maxConnIntUs byVal maxConnIntUs AS INTEGER.
The maximum connection interval in microseconds.

nSuprToutUs byVal nSuprToutUs AS INTEGER.
The link supervision timeout for the connection in microseconds.

Interactive
Command

No

 //Example :: BleConnect.sb (See in RM1xxCodeSnippets.zip)

 DIM rc, periphAddr$

 '//Scan indefinitely

 rc= BleScanStart (0, 0)

 IF rc==0 THEN

 PRINT " \ nScanning"

 ELSE

 PRINT " \ nError: " ; INTEGER.H'rc

 ENDIF

 '//This handler will be called when an advert is received

 FUNCTION HndlrAdvRpt ()

 DIM advData$, nDiscarded, nRssi

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 86

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 '//Read an advert report and connect to the sender

 rc= BleScanGetAdvReport (periphAddr$, advData$, nDiscarded, nRssi)

 rc= BleScanStop ()

 '//Connect to device with MAC address obtained above with 5s connection timeout,

 '//20ms min connection interval, 75 max, 5 second supervision timeout.

 rc= BleConnect (periphAddr$, 5000, 20000, 75000, 5000000)

 IF rc==0 THEN

 PRINT " \ n--- Connecting"

 ELSE

 PRINT " \ nError: " ; INTEGER.H'rc

 ENDIF

 ENDFUNC 1

 '//This handler will be called in the event of a connection timeout

 FUNCTION HndlrConnTO ()

 PRINT " \ n--- Connection timeout"

 rc= BleScanStart (0, 0)

 ENDFUNC 1

 '//This handler will be called when there is a BLE message

 FUNCTION HndlrBleMsg (nMsgId, nCtx)

 IF nMsgId == 0 THEN

 PRINT " \ n--- Connected to device with MAC address " ; StrHexize$ (periphAddr$)

 PRINT " \ n--- Disconnecting now"

 rc= BleDisconnect (nCtx)

 ENDIF

 ENDFUNC 1

 '//This handler will be called when a disconnection happens

 FUNCTION HndlrDiscon (nCtx, nRsn)

 ENDFUNC 0

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVDISCON CALL HndlrDiscon

 ONEVENT EVBLE_ADV_REPORT CALL HndlrAdvRpt

 ONEVENT EVBLE_CONN_TIMEOUT CALL HndlrConnTO

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 87

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 WAITEVENT

Expected Output:

BLECONNECT is an extension function.

BleConnectCancel

FUNCTION

This function is used to cancel an ongoing connection attempt which has not timed out. It takes no
parameters as there can only be one attempt in progress.

Use the value returned by SYSINFO(2016) to determine if there is an ongoing connection attempt.

The value is a bit mask:

Bit 0 Set if advertising is in progress (not possible with the RM1xx)

Bit 1 Set if there is already a connection in peripheral mode (not possible with the RM1xx)

Bit 2 Set if there is current connection attempt ongoing

Bit 3 Set when scanning

Bit 4 Set if there is already a connection to a peripheral

BLECONNECTCANCEL ()

Returns
INTEGER, a result code.

Most typical value ς 0x0000, indicating a successful operation.

Arguments None

Interactive
Command

No

//Example :: BleConnectCancel.sb (See in RM1xxCodeSnippets.zip)

 DIM rc, periphAddr$

 '//Scan indefinitely

 rc= BleScanStart (0, 0)

 IF rc==0 THEN

Scanning

--- Connecting

--- Connected to device with MAC address 01D8CFCF14498D

--- Disconnecting now

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 88

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 PRINT " \ nScanning"

 ELSE

 PRINT " \ nError: " ; INTEGER.H'rc

 ENDIF

 '//This handler will be called when an advert is received

 FUNCTION HndlrAdvRpt ()

 DIM advData$, nDiscarded, nRssi

 '//Read an advert report and connect to the sender

 rc= BleScanGetAdvReport (periphAddr$, advData$, nDiscarded, nRssi)

 rc= BleScanStop ()

 '//Wait until module stops scanning

 WHILE SysInfo (2016) ==8

 ENDWHILE

 '//Connect to device with MAC address obtained above with 5s connection timeout,

 '//20ms min connection interval, 75 max, 5 second supervision timeout.

 rc= BleConnect (periphAddr$, 5000, 20000, 75000, 5000000)

 IF rc==0 THEN

 PRINT " \ n--- Connecting \ nCancel"

 ELSE

 PRINT " \ nError: " ; INTEGER.H'rc

 ENDIF

 '//Cancel current connection attempt

 rc= BleConnectCancel ()

 PRINT " \ n--- Connection attempt cancelled"

 ENDFUNC 0

 ONEVENT EVBLE_ADV_REPORT CALL HndlrAdvRpt

 WAITEVENT

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 89

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

BLECONNECTCANCEL is an extension function.

BleConnectConfig

FUNCTION

This function is used to modify the default parameters that are used when attempting a connection using
BleConnect(). At any time, they can be read by adding the configID to 2100 and then passing that value to
SYSINFO().

When connecting, the central device must scan for adverts and then, when the particular peer address is
encountered, it can send the connection message to that peripheral.

Therefore, a connection attempt requires the underlying stack API to be supplied with a scan interval and
scan window. In addition, when multiple connections are in place, the radio must be shared as efficiently
as possible; one scheme to put in place is to have all connections parameters being integer multiples of a
ΨōŀǎŜΩ ǾŀƭǳŜΦ CƻǊ ǘƘŜ ǇǳǊǇƻǎŜ ƻŦ ǘƘƛǎ ŘƻŎǳƳŜƴǘŀǘƛƻƴ ŀƴŘ ŘƛǎŎǳǎǎƛƻƴǎ ǿƛǘƘ [ŀƛǊŘΣ ǘƘƛǎ ǇŀǊŀƳŜǘŜǊ ƛǎ ǊŜŦŜǊǊŜŘ
ǘƻ ŀǎ ΨƳǳƭǘƛ-ƭƛƴƪ ŎƻƴƴŜŎǘƛƻƴ ƛƴǘŜǊǾŀƭ ǇŜǊƛƻŘƛŎƛǘȅΩΦ

The default settings for these parameters are as follows:

Multi-link Connection Interval Periodicity 20 milliseconds

Scan Interval 80 milliseconds

Scan Window 40 milliseconds

Scan Latency 0

Notes:

Á The Scan Window and Interval are multiple integers of the periodicity (but do not have to be) and
the scanning has a 50% duty cycle. The 50% duty cycle attempts to ensure that connection events
for existing connections are missed as infrequently as possible.

Á The Scan Window and Interval are internally stored in units of 0.625 milliseconds slots, therefore
reading back via SYSINFO() does not accurately return the value you set.

BLECONNECTCONFIGconfigID,configValue))

Returns
INTEGER, a result code.

Most typical value ς 0x0000, indicating a successful operation.

Arguments

configID byVal configID AS INTEGER.
This identifies the value to update as follows:

Scanning

--- Connecting

Cancel

--- Connection attempt cancelled

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 90

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

0 Scan Interval in milliseconds (range 0..10240)
1 Scan Window in milliseconds (range 0..10240)
2 Slave Latency (0..1000)
5 Multi-Link Connection Interval Periodicity (20..200)

For all other configID values, the function returns an error.

configValue byVal configValue AS INTEGER.
This contains the new value to set in the parameters identified by configID.

Interactive
Command

No

 //Example :: BleConnectConfig.sb (See in RM1xxCodeSnippets.zip)

 DIM rc, startTick

 SUB GetParms ()

 //get default scan interval for connecting

 PRINT " \ nConn Scan Interval: " ; SysInfo (2100) ; "ms"

 //get default scan window for connecting

 PRINT " \ nConn Scan Window: " ; SysInfo (2101) ; "msò

 //get default slave latency for connecting

 PRINT " \ nConn slave latency: " ; SysInfo (2102)

 //get current multi - link connection interval periodicity

 PRINT " \ nML Conn Interval Periodicity: " ; SysInfo (2105) ; "ms"

 ENDSUB

 PRINT " \ n\ n--- Current Parameters:"

 GetParms ()

 PRINT " \ n\ nSetting new parameters..."

 rc = BleConnectConfig (0, 60) //set scan interval to 60

 rc = BleConnectConfig (1, 13) //set scan window to 13 (will round to 12)

 rc = BleConnectConfig (2, 3) //set slave latency to 1

 rc = BleConnectConfig (5, 30) //set ML connection interval periodicity to 30

 PRINT " \ n" ; integer.h 'rc

 PRINT " \ n\ n--- New Parameters:"

 GetParms ()

http://ews-support.lairdtech.com/

RM1xx Series smartBASIC Extensions
User Guide

Connectivity Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp
 91

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

BLECONNECTCONFIG is an extension function.

BleDisconnect

FUNCTION

This function causes an existing connection identified by a handle to be disconnected from the peer.

When the disconnection is complete, a EVBLEMSG message with msgId = 1 and context containing the
handle is thrown to the smart BASIC runtime engine.

BLEDISCONNECTnConnHandle))

Returns
INTEGER, a result code.

Most typical value ς 0x0000, indicating a successful operation.

Arguments

nConnHandle byVal nConnHandle AS INTEGER.
Specifies the handle of the connection that must be disconnected.

Interactive
Command

No

 //Example :: BleDisconnect.sb (See in RM1xxCodeSnippets.zip)

 DIM addr$: addr$= ""

 DIM rc

 FUNCTION HndlrBleMsg (BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER)

 SELECT nMsgId

--- Current Parameters:

Conn Scan Interval: 80ms

Conn Scan Window: 40ms

Conn slave latency: 0

ML Conn Interval Periodicity: 20ms

Setting new parameters...

--- New Parameters:

Conn Scan Interval: 60ms

Conn Scan Window: 12ms

Conn slave latency: 3

ML Conn Interval Periodicity: 30ms

http://ews-support.lairdtech.com/

